A005566 Number of walks of length n on square lattice, starting at origin, staying in first quadrant.
1, 2, 6, 18, 60, 200, 700, 2450, 8820, 31752, 116424, 426888, 1585584, 5889312, 22084920, 82818450, 312869700, 1181952200, 4491418360, 17067389768, 65166397296, 248817153312, 953799087696, 3656229836168, 14062422446800, 54086240180000, 208618354980000
Offset: 0
Examples
G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 60*x^4 + 200*x^5 + 700*x^6 + 2450*x^7 + ... - _Michael Somos_, Oct 17 2019
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017.
- Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and Lucien Pech, Hypergeometric expressions for generating functions of walks with small steps in the quarter plane. Eur. J. Comb. 61, 242-275 (2017)
- R. K. Guy, Letter to N. J. A. Sloane, May 1990
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
Programs
-
Magma
[Binomial(n, Floor(n/2))*Binomial(n+1, Floor((n+1)/2)): n in [0..30]]; // Vincenzo Librandi, Feb 18 2015
-
Mathematica
f[n_] := Binomial[n, Floor[n/2]] Binomial[n + 1, Floor[(n + 1)/2]]; Array[f, 25, 0] (* Robert G. Wilson v *)
Formula
a(n) = binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)).
E.g.f.: (BesselI(0, 2*x)+BesselI(1, 2*x))^2. - Vladeta Jovovic, Apr 28 2003
EXPCONV of A001405 with itself, i.e., a(n) = sum_{k=0}^n binomial(n,k)*A001405(k)*A001405(n-k). - Max Alekseyev, May 18 2006
G.f.: (16*x^2-1)*hypergeom([3/2, 3/2],[2],16*x^2) + (1/(2x)+2)*hypergeom([1/2, 1/2],[1],16*x^2) - 1/(2x). - Mark van Hoeij, Oct 13 2009
G.f.: (hypergeom([1/2,1/2],[1],16*x^2) - 1)/(2*x) + hypergeom([1/2,3/2],[2],16*x^2). - Mark van Hoeij, Aug 14 2014
a(n) = A241530(n)*2*floor(n/2)/(floor(n/2)+1). - Peter Luschny, Apr 25 2014
D-finite with recurrence (n+2)*(n+1)*a(n) +4*(-2*n-1)*a(n-1) -16*n*(n-1)*a(n-2)=0. - R. J. Mathar, Mar 07 2015
0 = a(n)*(+16*a(n+2) -6*a(n+3)) +a(n+1)*(-2*a(n+2) +a(n+3)) if n >= 0. - Michael Somos, Oct 17 2019
a(n) = binomial(floor(n + 1/2), floor(n/2)) * binomial(ceiling(n + 1/2), ceiling(n/2)). - Peter Luschny, Dec 14 2024
Extensions
Additional comments from David W. Wilson, May 05 2001
a(25)-a(26) from Vincenzo Librandi, Feb 18 2015
Comments