A005597 Decimal expansion of the twin prime constant C_2 = Product_{ p prime >= 3 } (1-1/(p-1)^2).
6, 6, 0, 1, 6, 1, 8, 1, 5, 8, 4, 6, 8, 6, 9, 5, 7, 3, 9, 2, 7, 8, 1, 2, 1, 1, 0, 0, 1, 4, 5, 5, 5, 7, 7, 8, 4, 3, 2, 6, 2, 3, 3, 6, 0, 2, 8, 4, 7, 3, 3, 4, 1, 3, 3, 1, 9, 4, 4, 8, 4, 2, 3, 3, 3, 5, 4, 0, 5, 6, 4, 2, 3, 0, 4, 4, 9, 5, 2, 7, 7, 1, 4, 3, 7, 6, 0, 0, 3, 1, 4, 1, 3, 8, 3, 9, 8, 6, 7, 9, 1, 1, 7, 7, 9
Offset: 0
Examples
0.6601618158468695739278121100145557784326233602847334133194484233354056423...
References
- Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
- Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 11.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 84-93, 133.
- R. K. Guy, Unsolved Problems in Number Theory, Section A8.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 194, 263-264.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1001
- Folkmar Bornemann, PRIMES Is in P: Breakthrough for "Everyman", Notices Amer. Math. Soc., Vol. 50, No. 5 (May 2003), p. 549.
- Paul S. Bruckman, Problem H-576, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 39, No. 4 (2001), p. 379; General IZE, Solution to Problem H-576 by the proposer, ibid., Vol. 40, No. 4 (2002), pp. 383-384.
- C. K. Caldwell, The Prime Glossary, twin prime constant.
- Henri Cohen, High-precision computation of Hardy-Littlewood constants, (1998).
- Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
- Steven R. Finch, Mathematical Constants, Errata and Addenda, arXiv:2001.00578 [math.HO], 2020, Sec. 2.1.
- Philippe Flajolet and Ilan Vardi, Zeta Function Expansions of Classical Constants, Unpublished manuscript. 1996.
- Daniel A. Goldston, Timothy Ngotiaoco and Julian Ziegler Hunts, The tail of the singular series for the prime pair and Goldbach problems, Functiones et Approximatio Commentarii Mathematici, Vol. 56, No. 1 (2017), pp. 117-141; arXiv preprint, arXiv:1409.2151 [math.NT], 2014.
- R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], 2009-2011, constant T_1^(2).
- B. H. Mayoh, The 2nd Goldbach conjecture revisited, BIT 8 (1968) 128-133 Table 5.
- G. Niklasch, Some number theoretical constants: 1000-digit values. [Cached copy]
- G. Niklasch, Twin primes constant.
- Simon Plouffe, The twin primes constant.
- Simon Plouffe, Plouffe's Inverter, The twin primes constant.
- Pascal Sebah, Numbers, constants and computation (gives 5000 digits).
- Eric Weisstein's World of Mathematics, Twin Primes Constant.
- Eric Weisstein's World of Mathematics, Twin Prime Conjecture.
- Eric Weisstein's World of Mathematics, k-Tuple Conjecture.
- Eric Weisstein's World of Mathematics, Prime Constellation.
- John W. Wrench, Jr., Evaluation of Artin's constant and the twin-prime constant, Math. Comp., Vol. 15, No. 76 (1961), pp. 396-398.
Crossrefs
Programs
-
Mathematica
s[n_] := (1/n)*N[ Sum[ MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], 160]; C2 = (175/256)*Product[ (Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, 160}]; RealDigits[C2][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 15 2012, after PARI *) digits = 105; f[n_] := -2*(2^n-1)/(n+1); C2 = Exp[NSum[f[n]*(PrimeZetaP[n+1] - 1/2^(n+1)), {n, 1, Infinity}, NSumTerms -> 5 digits, WorkingPrecision -> 5 digits]]; RealDigits[C2, 10, digits][[1]] (* Jean-François Alcover, Apr 16 2016, updated Apr 24 2018 *)
-
PARI
\p1000; 175/256*prod(k=2,500,(zeta(k)*(1-1/2^k)*(1-1/3^k)*(1-1/5^k)*(1-1/7^k))^(-sumdiv(k,d,moebius(d)*2^(k/d))/k))
-
PARI
prodeulerrat(1-1/(p-1)^2, 1, 3) \\ Amiram Eldar, Mar 12 2021
Formula
Equals Product_{k>=2} (zeta(k)*(1-1/2^k))^(-Sum_{d|k} mu(d)*2^(k/d)/k). - Benoit Cloitre, Aug 06 2003
Equals 1/A167864. - Jonathan Sondow, Nov 18 2009
Equals Sum_{k>=1} mu(2*k-1)/phi(2*k-1)^2, where mu is the Möbius function (A008683) and phi is the Euler totient function (A000010) (Bruckman, 2001). - Amiram Eldar, Jan 14 2022
Extensions
More terms from Vladeta Jovovic, Nov 08 2001
Commented and edited by Daniel Forgues, Jul 28 2009, Aug 04 2009, Aug 12 2009
PARI code removed by D. S. McNeil, Dec 26 2010
Comments