A005654 Number of bracelets (turn over necklaces) with n red, 1 pink and n-1 blue beads; also reversible strings with n red and n-1 blue beads; also next-to-central column in Losanitsch's triangle A034851.
1, 2, 6, 19, 66, 236, 868, 3235, 12190, 46252, 176484, 676270, 2600612, 10030008, 38781096, 150273315, 583407990, 2268795980, 8836340260, 34461678394, 134564560988, 526024917288, 2058358034616, 8061901596814, 31602652961516, 123979635837176, 486734861612328
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Marcia Ascher, Mu torere: an analysis of a Maori game, Math. Mag. 60 (1987), no. 2, 90-100.
- R. K. Guy & N. J. A. Sloane, Correspondence, 1985
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260-288.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- N. J. A. Sloane, Classic Sequences
- Index entries for sequences related to bracelets
Crossrefs
Cf. A034851.
Programs
-
Magma
[((Binomial(2*n-1, n)+Binomial(n-1, Floor(n/2)))/2): n in [1..30]]; // Vincenzo Librandi, May 24 2012
-
Maple
A005654:=n->(1/2)*(binomial(2*n-1,n)+binomial(n-1,floor(n/2))): seq(A005654(n), n=1..40); # Wesley Ivan Hurt, Jan 29 2017
-
Mathematica
Table[(Binomial[2n-1,n]+Binomial[n-1,Floor[n/2]])/2,{n,30}] (* Harvey P. Dale, May 17 2012 *)
-
PARI
C(n,k)=binomial(n,k) a(n)=(1/2)*(C(2*n-1,n)+C(n-1,n\2))
Formula
a(n) = (1/2) * (binomial(2*n-1, n) + binomial(n-1, floor(n/2))). - Michael Somos
a(n) = A034851(2*n-1, n-1).
Conjecture: n*(n-2)*a(n) - (5*n-3)*(n-2)*a(n-1) + 4*(n-2)*a(n-2) + 4*(5*n^2-27*n+37)*a(n-3) - 8*(2*n-7)*(n-4)*a(n-4) = 0. - R. J. Mathar, Nov 09 2013
Extensions
Sequence extended and description corrected by Christian G. Bower