A005666 Minimal number of moves for the cyclic variant of the Towers of Hanoi for 3 pegs and n disks, with the final peg two steps away.
0, 2, 7, 21, 59, 163, 447, 1223, 3343, 9135, 24959, 68191, 186303, 508991, 1390591, 3799167, 10379519, 28357375, 77473791, 211662335, 578272255, 1579869183, 4316282879, 11792304127, 32217174015, 88018956287, 240472260607, 656982433791, 1794909388799
Offset: 0
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 18.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- J.-P. Allouche, Note on the cyclic towers of Hanoi, Theoret. Comput. Sci., 123 (1994), 3-7.
- M. D. Atkinson, The Cyclic Towers of Hanoi, Info. Proc. Letters, 13 (1981), 118-119.
- R. K. Guy, Letter to N. J. A. Sloane, 1976
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- D. G. Poole, The towers and triangles of Professor Claus (or, Pascal knows Hanoi), Math. Mag., 67 (1994), 323-344.
- Amir Sapir, The Tower of Hanoi with Forbidden Moves, The Computer J. 47 (1) (2004) 20, case (ii), cyclic.
- Index entries for sequences related to Towers of Hanoi
- Index entries for linear recurrences with constant coefficients, signature (3,0,-2).
Programs
-
Magma
[Floor((1/(4*Sqrt(3)))*((1+Sqrt(3))^(n+2)-(1-Sqrt(3))^(n+2))-1): n in [0..30]]; // Vincenzo Librandi, Sep 03 2015
-
Mathematica
CoefficientList[Series[z (2 + z)/(z - 1)/(2 z^2 + 2 z - 1), {z, 0, 22}], z] (* Michael De Vlieger, Sep 02 2015 *) LinearRecurrence[{3,0,-2},{0,2,7},30] (* Harvey P. Dale, Jul 28 2025 *)
Formula
a(n) = (1/(4*s3))*((1+s3)^(n+2)-(1-s3)^(n+2))-1 where s3 = sqrt(3).
a(n) = A028859(n) - 1.
G.f.: x*(2+x) / ( (x-1)*(2*x^2+2*x-1) ). - Simon Plouffe in his 1992 dissertation
From Paul Zimmermann, Feb 07 2018: (Start)
a(n) = 2*a(n-1)+2*a(n-2)+3 (same recurrence as A005665).
a(n) = 2*a(n-1)+c(n-1)+2 where c(n) = 2*a(n-1)+1 stands for A005665. (End)
E.g.f.: exp(x)*(3*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x) - 3)/3. - Stefano Spezia, Apr 11 2025
Extensions
Name clarified by Paul Zimmermann, Feb 09 2018
Comments