A005689 Number of Twopins positions.
1, 2, 4, 7, 11, 16, 22, 30, 42, 61, 91, 137, 205, 303, 443, 644, 936, 1365, 1999, 2936, 4316, 6340, 9300, 13625, 19949, 29209, 42785, 62701, 91917, 134758, 197548, 289547
Offset: 6
Keywords
References
- R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. Austin and R. K. Guy, Binary sequences without isolated ones, Fib. Quart., 16 (1978), 84-86.
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,4,2).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1).
Programs
-
Maple
A005689:=-(1+z**2+z**3+z**4+z**5)/(z**3+z-1)/(z**3-z+1); [Conjectured by Simon Plouffe in his 1992 dissertation.]
-
Mathematica
LinearRecurrence[{2,-1,0,0,0,1},{1,2,4,7,11,16},40] (* Harvey P. Dale, Feb 02 2019 *)
Formula
G.f.: x^6*(1+x^2+x^3+x^4+x^5)/(1-2x+x^2-x^6). - Ralf Stephan, Apr 20 2004
Sum{k=0..floor(n/6), binomial(n-4k, 2k)} is 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, ... - Paul Barry, Sep 16 2004