A005709 a(n) = a(n-1) + a(n-7), with a(i) = 1 for i = 0..6.
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 53, 66, 83, 105, 133, 168, 211, 264, 330, 413, 518, 651, 819, 1030, 1294, 1624, 2037, 2555, 3206, 4025, 5055, 6349, 7973, 10010, 12565, 15771, 19796, 24851
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..500
- Mudit Aggarwal and Samrith Ram, Generating Functions for Straight Polyomino Tilings of Narrow Rectangles, J. Int. Seq., Vol. 26 (2023), Article 23.1.4.
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024. See p. 18.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 10.
- P. Chinn and S. Heubach, (1, k)-compositions, Congr. Numer. 164 (2003), 183-194. [Local copy]
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5.
- R. K. Guy, Letter to N. J. A. Sloane with attachment, 1988
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 380
- S. Kitaev, Independent sets on path-schemes, JIS 9 (2006) # 06.2.2 G(x) for M={1,2,3,4,5,6} gives seq. shifted 6 places left
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO], 2016, Section 4.6.
- Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
- David Newman, Problem E3274, Amer. Math. Monthly, 95 (1988), 555.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1).
Programs
-
Maple
A005709 := proc(n) option remember; if n <=6 then 1; else A005709(n-1)+A005709(n-7); fi; end; with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 6)}, unlabeled]: seq(count(SeqSetU, size=j), j=7..55); # Zerinvary Lajos, Oct 10 2006 ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 6)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=6..54); # Zerinvary Lajos, Mar 26 2008 M:= Matrix(7, (i,j)-> if j=1 and member(i,[1,7]) then 1 elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,1]; seq(a(n), n=0..50); # Alois P. Heinz, Jul 27 2008
-
Mathematica
f[ n_Integer ] := f[ n ]=If[ n>7, f[ n-1 ]+f[ n-7 ], 1 ] Table[Sum[Binomial[n-6*i, i], {i, 0, n/7}], {n, 0, 45}] (* Adi Dani, Jun 25 2011 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
-
PARI
x='x+O('x^66); Vec(1/(1-(x+x^7))) /* Joerg Arndt, Jun 25 2011 */
Formula
G.f.: 1/(1-x-x^7). - Simon Plouffe in his 1992 dissertation.
For positive integers n and k such that k <= n <= 7*k, and 6 divides n-k, define c(n,k) = binomial(k,(n-k)/6), and c(n,k)=0, otherwise. Then, for n >= 1, a(n) = Sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([1/7-n/7, 2/7-n/7, 3/7-n/7, 4/7-n/7, 5/7-n/7, 6/7-n/7, -n/7], [1/6-n/6, 1/3-n/6, 1/2-n/6, 2/3-n/6, 5/6-n/6, -n/6], -7^7/6^6) for n >= 36. - Peter Luschny, Sep 19 2014
Extensions
Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
Comments