A005713 Define strings S(0)=0, S(1)=11, S(n) = S(n-1)S(n-2); iterate.
1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1
Offset: 0
Examples
The infinite word is S(infinity) = 110111101101111011110110...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Jeffrey Shallit and Anatoly Zavyalov, Transduction of Automatic Sequences and Applications, arXiv:2303.15203 [cs.FL], 2023, see p. 31.
Programs
-
Haskell
a005713 n = a005713_list !! n a005713_list = 1 : 1 : concat (sibb [0] [1,1]) where sibb xs ys = zs : sibb ys zs where zs = xs ++ ys -- Reinhard Zumkeller, Dec 30 2011
-
Mathematica
s[0] = {0}; s[1] = {1, 1}; s[n_] := s[n] = Join[s[n-1], s[n-2]]; s[10] (* Jean-François Alcover, May 15 2013 *) nxt[{a_,b_}]:={b,Join[a,b]}; Drop[Nest[nxt,{{0},{1,1}},10][[1]],3] (* Harvey P. Dale, Jan 31 2019 *)
-
PARI
a(n,f1,f2)=local(f3); for(i=3,n,f3=concat(f2,f1); f1=f2; f2=f3); f2
-
PARI
printp(a(10,[ 0 ],[ 1,1 ])) \\ Would give S(10). Sequence is S(infinity).
Formula
From Benoit Cloitre, Apr 21 2003: (Start)
For n > 1, a(n-1) = floor(phi*ceiling(n/phi)) - ceiling(phi*floor(n/phi)) where phi=(1+sqrt(5))/2.
For n >= 0, a(n) = abs(A014677(n+1)). (End)
Extensions
Corrected by Michael Somos
Comments