cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005753 Number of rooted identity matched trees with n nodes.

Original entry on oeis.org

1, 2, 5, 18, 66, 266, 1111, 4792, 21124, 94888, 432415, 1994828, 9296712, 43706722, 207030398, 987130456, 4733961435, 22819241034, 110500644857, 537295738556, 2622248720234, 12840953621208, 63074566121245, 310693364823376, 1534374047239554, 7595642577152762
Offset: 1

Views

Author

Keywords

Comments

Also number of rooted identity trees with n nodes and 2-colored non-root nodes. - Christian G. Bower, Apr 15 1998

Examples

			G.f.: A(x) = x + 2*x^2 + 5*x^3 + 18*x^4 + 66*x^5 + 266*x^6 + ...
where A(x) = x*(1+x)^2*(1+x^2)^4*(1+x^3)^10*(1+x^4)^36*(1+x^5)^132*... (the exponents are A038077(n), n>=1).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A255517.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2*a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n=1, 1, b((n-1)$2)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[2*a[i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n == 1, 1, b[n-1, n-1]]; Table[a[n] // FullSimplify, {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(x*prod(k=1, n-1, (1+x^k+x*O(x^n))^(2*a(k))), n)} /* Paul D. Hanna */

Formula

G.f.: x*Product_{n>=1} (1 + x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Dec 31 2011
a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.249032491228170579164952216..., c = 0.192066288645200371237879149260484794708740197522264442948290580404909605849... - Vaclav Kotesovec, Aug 25 2014, updated Dec 26 2020
G.f. A(x) satisfies: A(x) = x*exp(2*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k). - Ilya Gutkovskiy, Apr 13 2019