cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005770 Number of convex polygons of length 2n on square lattice whose leftmost bottom vertex and rightmost top vertex have the same x-coordinate.

Original entry on oeis.org

1, 9, 55, 286, 1362, 6143, 26729, 113471, 473471, 1951612, 7974660, 32384127, 130926391, 527657073, 2121795391, 8518575466, 34162154550, 136893468863, 548253828965, 2194897467395, 8784784672511, 35153438973304, 140653028240520, 562719731644671
Offset: 5

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005770:=(1-3*z+2*z**2+z**3)/(4*z-1)/(2*z-1)/(z**2-3*z+1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[x^5*(1-3*x+2*x^2+x^3)/((1 - 3*x + x^2)^2*(1 - 6*x + 8*x^2)),{x,0,28}],x] (* Stefano Spezia, Jun 04 2024 *)

Formula

a(n) = A005436(n) - A005768(n) - A005769(n).
G.f.: x^5*(1-3*x+2*x^2+x^3)/((1 - 3*x + x^2)^2*(1 - 6*x + 8*x^2)). - Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
a(n) = 12*a(n-1) - 55*a(n-2) + 120*a(n-3) - 125*a(n-4) + 54*a(n-5) - 8*a(n-6) for n > 8. - Stefano Spezia, Jun 04 2024

Extensions

Better description from Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
More terms from Sean A. Irvine, Aug 26 2016