A005775 Number of compact-rooted directed animals of size n having 3 source points.
1, 4, 14, 45, 140, 427, 1288, 3858, 11505, 34210, 101530, 300950, 891345, 2638650, 7809000, 23107488, 68375547, 202336092, 598817490, 1772479905, 5247421410, 15538054455, 46019183840, 136325212750, 403933918375, 1197131976846, 3548715207534, 10521965227669
Offset: 3
Examples
G.f. = x^3 + 4*x^4 + 14*x^5 + 45*x^6 + 140*x^7 + 427*x^8 + 1288*x^9 + 3858*x^10 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 3..1000
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- D. Gouyou-Beauchamps and G. Viennot, Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math. 9 (1988), no. 3, 334-357.
Programs
-
Haskell
a005775 = flip a038622 2 . (subtract 1) -- Reinhard Zumkeller, Feb 26 2013
-
Maple
seq(simplify(GegenbauerC(n-4,-n+1,-1/2) + GegenbauerC(n-3,-n+1,-1/2)),n=3..28); # Peter Luschny, May 12 2016
-
Mathematica
nmax = 28; t[n_ /; n > 0, k_ /; k >= 1] := t[n, k] = t[n-1, k-1] + t[n-1, k] + t[n-1, k+1]; t[0, 0] = 1; t[0, ] = 0; t[?Negative, ?Negative] = 0; t[n, 0] := 2*t[n-1, 0] + t[n-1, 1]; a[n_] := t[n-1, 2]; Table[a[n], {n, 3, nmax} ] (* Jean-François Alcover, Jul 03 2013, from A038622 *)
-
PARI
{a(n) = polcoeff( (x^2 + x - 1 + (x^2 - 3*x + 1) * sqrt((1 + x) / (1 - 3*x) + x^3 * O(x^n))) / (2*x^2), n)};
-
PARI
{a(n) = n--; sum(k=0, n, binomial(n, k) * binomial(k, k\2 -1))}; /* Michael Somos, May 12 2016 */
Formula
D-finite with recurrence (n+2)*(n-3)*a(n) = 2*n*(n-1)*a(n-1) + 3*(n-1)*(n-2)*a(n-2), a(2)=0, a(3)=1. - Michael Somos, Feb 02 2002
G.f.: (x^2 + x - 1 +(x^2 - 3*x + 1)*sqrt((1+x)/(1-3*x)))/(2*x^2).
From Paul Barry, Dec 28 2006: (Start)
E.g.f.: exp(x)*(Bessel_I(2,2*x) + Bessel_I(3,2*x));
a(n+1) = Sum_{k=0..n} C(n,k)*C(k,floor(k/2)-1). (End)
a(n) ~ 3^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 25 2014
G.f.: (z^3*M(z)^2+z^4*M(z)^3)/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = GegenbauerC(n-4,-n+1,-1/2) + GegenbauerC(n-3,-n+1,-1/2). - Peter Luschny, May 12 2016
0 = a(n)*(+9*a(n+1) - 63*a(n+2) - 54*a(n+3) + 87*a(n+4) - 21*a(n+5))+ a(n+1)*(+21*a(n+1) + 79*a(n+2) + 13*a(n+3) - 118*a(n+4) + 35*a(n+5)) + a(n+2)*(-14*a(n+2) + 79*a(n+3) - 67*a(n+4) + 14*a(n+5)) + a(n+3)*(+6*a(n+3) + 19*a(n+4) - 11*a(n+5)) + a(n+4)*(+a(n+4) + a(n+5)) if n >= 0. - Michael Somos, May 12 2016
Extensions
More terms from Randall L Rathbun, Jan 19 2002
Edited by Michael Somos, Feb 02 2002
Comments