A060564 Number of elliptic curves (up to isogeny) of conductor n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 2, 3, 2, 0, 0, 1, 1, 1, 1, 1, 3, 1, 0, 1, 1, 0, 1, 1, 0, 3, 1, 3, 1, 1, 2, 0, 1, 1, 2, 1, 0, 0, 1, 2, 3, 2, 2, 0, 1, 0, 2, 0, 1, 4
Offset: 1
Examples
a(11) = 1, as there is exactly one isogeny class of elliptic curves over Q of conductor 11, represented by E : y^2 + y = x^3 - x^2. - _Robin Visser_, Nov 04 2024
Links
- J. E. Cremona, Table of n, a(n) for n = 1..10000
- J. E. Cremona, Elliptic Curve Data
- A. Dujella, History of elliptic rank records
- LMFDB, Elliptic curves over Q
- F. Richman, Elliptic curves [broken link]
- A. L. Robledo, PlanetMath.org, The Arithmetic of Elliptic Curves [broken link]
- E. Savaş, T. A. Schmidt, and Ç. K. Koç, Generating Elliptic Curves of Prime Order. In: Koç, Ç.K., Naccache, D., Paar, C. (eds) Cryptographic Hardware and Embedded Systems — CHES 2001. CHES 2001. Lecture Notes in Computer Science, vol 2162. Springer, Berlin, Heidelberg.
- J. S. Silverman, An Introduction to the Theory of Elliptic Curves
- Eric Weisstein's World of Mathematics, Elliptic Curve
Programs
-
Sage
# Uses Cremona's database of elliptic curves (works for all n < 500000) def a(n): return CremonaDatabase().number_of_isogeny_classes(n) # Robin Visser, Nov 04 2024
Comments