A074764 Numbers of smaller squares into which a square may be dissected.
1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1
Examples
6 is a term of the sequence because a square can be dissected as follows: +---+---+---+ |...|...|...| +---+---+---+ |.......|...| |.......+---+ |.......|...| +-------+---+
References
- A. Soifer, How Does One Cut A Triangle?, Chapter 2, CEME, Colorado Springs CO 1990.
- Allan C. Wechsler and Michael Kleber, messages to math-fun mailing list, Sep 06, 2002.
Links
- Mr. Glaeser, Carrés, Le Petit Archimède, no. 0, January 1973.
- Murray Klamkin, Review of "How Does One Cut a Triangle?" by Alexander Soifer, Amer. Math. Monthly, October 1991, pp. 775-. [Annotated scanned copy of pages 775-777 only] See "Grand Problem 2".
- Miklós Laczkovich, Tilings of polygons with similar triangles, Combinatorica 10.3 (1990): 281-306.
- Miklós Laczkovich. Tilings of triangles Discrete mathematics 140.1 (1995): 79-94.
- Miklós Laczkovich, Tilings of polygons with similar triangles, II, Discrete & Computational Geometry 19.3 (1998): 411-425.
- Alexander Soifer, How Does One Cut a Triangle?, Chapter 2, Springer-Verlag New York, 2009.
- Hassan Tarfaoui, Concours Général 1990 - Exercice 3 (in French).
- Andrzej Zak, Dissection of a triangle into similar triangles, Discrete & Computational Geometry 34.2 (2005): 295-312.
- Index to sequences related to Olympiads and other Mathematical competitions.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Maple
gf:= x*(1 - x + x^3 - x^4 + x^5)/(1-x): select(t-> coeftayl(gf, x=0, t)=1, [$1..100])[]; # Alois P. Heinz, Aug 17 2021
-
Mathematica
CoefficientList[Series[(1 + 2*x -x^2 - x^3)/(1 - x)^2, {x, 0, 20}], x] (* Georg Fischer, Aug 17 2021 *) LinearRecurrence[{2,-1},{1,4,6,7},80] (* Harvey P. Dale, Oct 17 2021 *)
-
PARI
A074764(n)=if(n>2, n+3, n^2) \\ M. F. Hasler, May 24 2024
-
Python
A074764 = lambda n: n+3 if n>2 else n*n # M. F. Hasler, May 24 2024
Formula
{k : k != 2, 3, or 5}.
G.f. of characteristic function: x*(1 - x + x^3 - x^4 + x^5)/(1-x).
G.f.: x*(1 + 2*x -x^2 - x^3)/(1 - x)^2. - Georg Fischer, Aug 17 2021
a(n) = n + 3 for all n > 2. - M. F. Hasler, May 24 2024
E.g.f.: exp(x)*(3 + x) - x^2/2 - 3*(x + 1). - Stefano Spezia, Sep 17 2024
Comments