A005799 Generalized Euler numbers of type 2^n.
1, 1, 2, 10, 104, 1816, 47312, 1714000, 82285184, 5052370816, 386051862272, 35917232669440, 3996998043812864, 524203898507631616, 80011968856686405632, 14061403972845412526080, 2818858067801804443910144
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Peter Bala, Some S-fractions related to the expansions of sin(ax)/cos(bx) and cos(ax)/cos(bx)
- Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Proof of several conjectures relating permanents to Combinatorial sequences, arXiv:2109.11506v3 [math.CO], 2021-2023.
- Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Permanent identities, combinatorial sequences, and permutation statistics, Advances in Applied Mathematics, Volume 163, Part A, 102789 (2025).
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- H. Prodinger, On Touchard's continued fraction and extensions: combinatorics-free, self-contained proofs , arXiv:1102.5186 [math.CO], 2011.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
Programs
-
Maple
T := proc(n, k) option remember; if n < 0 or k < 0 then 0 elif n = 0 then euler(k, 1) else T(n-1, k+1) - T(n-1, k) fi end: a := n -> (-2)^n*T(n, n); seq(a(n), n=0..16); # Peter Luschny, Aug 23 2017
-
Mathematica
a[n_] := Sum[Binomial[n, i]Abs[EulerE[2i]], {i, 0, n}]/2^n
Formula
a(n) = (1/2^n) * Sum_{i=0..n} binomial(n, i) * A000364(i).
From Sergei N. Gladkovskii, Dec 27 2012, Oct 11 2013, Oct 27 2013, Jan 08 2014: (Start) Continued fractions:
G.f.: A(x) = 1/G(0) where G(k) = 1 - x*(k+1)*(2*k+1)/(1 - x*(k+1)*(2*k+1)/G(k+1)).
G.f.: Q(0)/(1-x), where Q(k) = 1 - x^2*(k+1)^2*(2*k+1)^2/(x^2*(k+1)^2*(2*k+1)^2 - (4*x*k^2 + 2*x*k + x - 1)*( 4*x*k^2 + 10*x*k + 7*x - 1)/Q(k+1)).
G.f.: R(0), where R(k) = 1 - x*(2*k+1)*(k+1)/(x*(2*k+1)*(k+1) - 1/(1 - x*(2*k+1)*(k+1)/(x*(2*k+1)*(k+1) - 1/R(k+1)))).
G.f.: 2/(x*Q(0)), where Q(k) = 2/x - 1 - (2*k+1)^2/(1 - (2*k+2)^2/Q(k+1)). (End)
a(n) ~ 2^(3*n+3) * n^(2*n+1/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, May 30 2015
a(n) = 2^n * Sum_{k=0..n} (-1)^k*binomial(n, k)*euler(n+k, 1). - Peter Luschny, Aug 23 2017
From Peter Bala, Dec 21 2019: (Start)
O.g.f. as a continued fraction: 1/(1 - x/(1 - x/(1 - 6*x/(1 - 6*x/(1 - 15*x/(1 - 15*x/(1 - ... - n*(2*n-1)*x/(1 - n*(2*n-1)*x/(1 - ...))))))))) - apply Bala, Proposition 3, with a = 0, b = 1 and replace x with x/2.
Conjectures:
E.g.f. as a continued fraction: 2/(2 - (1-exp(-4*t))/(2 - (1-exp(-8*t))/(2 - (1-exp(-12*t))/(2 - ... )))) = 1 + t + 2*t^2/2! + 10*t^3/3! + 104*t^4/4! + ....
Cf. A000657. [added April 18 2024: for a proof of this conjecture see Fu et al., Section 4.3.]
a(n) = (-2)^(n+1)*Sum_{k = 0..floor((n-1)/2)} binomial(n,2*k+1)*(2^(2*n-2*k) - 1)*Bernoulli(2*n-2*k)/(2*n-2*k) for n >= 1. (End)
Extensions
Edited by Dean Hickerson, Dec 10 2002
Comments