cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005835 Pseudoperfect (or semiperfect) numbers n: some subset of the proper divisors of n sums to n.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264
Offset: 1

Views

Author

Keywords

Comments

In other words, some subset of the numbers { 1 <= d < n : d divides n } adds up to n. - N. J. A. Sloane, Apr 06 2008
Also, numbers n such that A033630(n) > 1. - Reinhard Zumkeller, Mar 02 2007
Deficient numbers cannot be pseudoperfect. This sequence includes the perfect numbers (A000396). By definition, it does not include the weird, i.e., abundant but not pseudoperfect, numbers (A006037).
From Daniel Forgues, Feb 07 2011: (Start)
The first odd pseudoperfect number is a(233) = 945.
An empirical observation (from the graph) is that it seems that the n-th pseudoperfect number would be asymptotic to 4n, or equivalently that the asymptotic density of pseudoperfect numbers would be 1/4. Any proof of this? (End)
A065205(a(n)) > 0; A210455(a(n)) = 1. - Reinhard Zumkeller, Jan 21 2013
Deléglise (1998) shows that abundant numbers have asymptotic density < 0.2480, resolving the question which he attributes to Henri Cohen of whether the abundant numbers have density greater or less than 1/4. The density of pseudoperfect numbers is the difference between the densities of abundant numbers (A005101) and weird numbers (A006037), since the remaining integers are perfect numbers (A000396), which have density 0. Using the first 22 primitive pseudoperfect numbers (A006036) and the fact that every multiple of a pseudoperfect number is pseudoperfect it can be shown that the density of pseudoperfect numbers is > 0.23790. - Jaycob Coleman, Oct 26 2013
The odd terms of this sequence are given by the odd abundant numbers A005231, up to hypothetical (so far unknown) odd weird numbers (A006037). - M. F. Hasler, Nov 23 2017
The term "pseudoperfect numbers" was coined by Sierpiński (1965). The alternative term "semiperfect numbers" was coined by Zachariou and Zachariou (1972). - Amiram Eldar, Dec 04 2020

Examples

			6 = 1+2+3, 12 = 1+2+3+6, 18 = 3+6+9, etc.
70 is not a member since the proper divisors of 70 are {1, 2, 5, 7, 10, 14, 35} and no subset adds to 70.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 144.

Crossrefs

Subsequence of A023196; complement of A136447.
See A136446 for another version.
Cf. A109761 (subsequence).

Programs

  • Haskell
    a005835 n = a005835_list !! (n-1)
    a005835_list = filter ((== 1) . a210455) [1..]
    -- Reinhard Zumkeller, Jan 21 2013
  • Maple
    with(combinat):
    isA005835 := proc(n)
        local b, S;
        b:=false;
        S:=subsets(numtheory[divisors](n) minus {n});
        while not S[finished] do
            if convert(S[nextvalue](), `+`)=n then
                b:=true;
                break
            end if ;
        end do;
        b
    end proc:
    for n from 1 do
        if isA005835(n) then
            print(n);
        end if;
    end do: # Walter Kehowski, Aug 12 2005
  • Mathematica
    A005835 = Flatten[ Position[ A033630, q_/; q>1 ] ] (* Wouter Meeussen *)
    pseudoPerfectQ[n_] := Module[{divs = Most[Divisors[n]]}, MemberQ[Total/@Subsets[ divs, Length[ divs]], n]]; A005835 = Select[Range[300],pseudoPerfectQ] (* Harvey P. Dale, Sep 19 2011 *)
    A005835 = {}; n = 0; While[Length[A005835] < 100, n++; d = Most[Divisors[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[A005835, n]]]; A005835 (* T. D. Noe, Dec 29 2011 *)
  • PARI
    is_A005835(n, d=divisors(n)[^-1], s=vecsum(d), m=#d)={ m||return; while(d[m]>n, s-=d[m]; m--||return); d[m]==n || if(nA005835(n-d[m], d, s-d[m], m-1) || is_A005835(n, d, s-d[m], m-1), n==s)} \\ Returns nonzero iff n is the sum of a subset of d, which defaults to the set of proper divisors of n. Improved using more recent PARI syntax by M. F. Hasler, Jul 15 2016, Jul 27 2016. NOTE: This function is also used (with 2nd optional arg) in A136446, A122036 and possibly in A006037. - M. F. Hasler, Jul 28 2016
    for(n=1,1000,is_A005835(n)&&print1(n",")) \\ M. F. Hasler, Apr 06 2008
    

Extensions

Better description and more terms from Jud McCranie, Oct 15 1997