A005835 Pseudoperfect (or semiperfect) numbers n: some subset of the proper divisors of n sums to n.
6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264
Offset: 1
Examples
6 = 1+2+3, 12 = 1+2+3+6, 18 = 3+6+9, etc. 70 is not a member since the proper divisors of 70 are {1, 2, 5, 7, 10, 14, 35} and no subset adds to 70.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 144.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Anonymous, Semiperfect Numbers: Definition [Broken link]
- Stan Benkoski, Problem E2308, Amer. Math. Monthly, Vol. 79, No. 7 (1972), p. 774.
- S. J. Benkoski and P. Erdős, On weird and pseudoperfect numbers, Math. Comp., Vol. 28, No. 126 (1974), pp. 617-623. Corrigendum, Math. Comp., Vol. 29, No. 130 (1975), pp. 673-674.
- David Eppstein, Is it known whether a group of Egyptian fractions with odd, distinct denominators can add up to 1?, 1996.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
- Tyler Ross, A Perfect Number Generalization and Some Euclid-Euler Type Results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.7.5. See p. 3.
- Wacław Sierpiński, Sur les nombres pseudoparfaits, Matematički Vesnik, Vol. 2 (17), No. 33 (1965), pp. 212-213.
- Jonathan Sondow and Kieren MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdős-Moser equation, Amer. Math. Monthly, Vol. 124, No. 3 (2017), pp. 232-240; arXiv:math preprint, arXiv:math/1812.06566 [math.NT], 2018.
- Eric Weisstein's World of Mathematics, Semiperfect Number.
- Wikipedia, Semiperfect number.
- Andreas Zachariou and Eleni Zachariou, Perfect, Semi-Perfect and Ore Numbers, Bull. Soc. Math. Grèce (New Ser.), Vol. 13, No. 13A (1972), pp. 12-22; alternative link.
Crossrefs
Programs
-
Haskell
a005835 n = a005835_list !! (n-1) a005835_list = filter ((== 1) . a210455) [1..] -- Reinhard Zumkeller, Jan 21 2013
-
Maple
with(combinat): isA005835 := proc(n) local b, S; b:=false; S:=subsets(numtheory[divisors](n) minus {n}); while not S[finished] do if convert(S[nextvalue](), `+`)=n then b:=true; break end if ; end do; b end proc: for n from 1 do if isA005835(n) then print(n); end if; end do: # Walter Kehowski, Aug 12 2005
-
Mathematica
A005835 = Flatten[ Position[ A033630, q_/; q>1 ] ] (* Wouter Meeussen *) pseudoPerfectQ[n_] := Module[{divs = Most[Divisors[n]]}, MemberQ[Total/@Subsets[ divs, Length[ divs]], n]]; A005835 = Select[Range[300],pseudoPerfectQ] (* Harvey P. Dale, Sep 19 2011 *) A005835 = {}; n = 0; While[Length[A005835] < 100, n++; d = Most[Divisors[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[A005835, n]]]; A005835 (* T. D. Noe, Dec 29 2011 *)
-
PARI
is_A005835(n, d=divisors(n)[^-1], s=vecsum(d), m=#d)={ m||return; while(d[m]>n, s-=d[m]; m--||return); d[m]==n || if(n
A005835(n-d[m], d, s-d[m], m-1) || is_A005835(n, d, s-d[m], m-1), n==s)} \\ Returns nonzero iff n is the sum of a subset of d, which defaults to the set of proper divisors of n. Improved using more recent PARI syntax by M. F. Hasler, Jul 15 2016, Jul 27 2016. NOTE: This function is also used (with 2nd optional arg) in A136446, A122036 and possibly in A006037. - M. F. Hasler, Jul 28 2016 for(n=1,1000,is_A005835(n)&&print1(n",")) \\ M. F. Hasler, Apr 06 2008
Extensions
Better description and more terms from Jud McCranie, Oct 15 1997
Comments