Original entry on oeis.org
1, 3, 4, 6, 8, 10, 12, 15, 17, 20, 23, 26, 29, 32, 36, 39, 43, 46, 50, 54, 58, 62, 66, 70, 75, 79, 84, 88, 93, 98, 103, 107, 112, 117, 123, 128, 133, 138, 144, 149, 155, 160, 166, 172, 178, 184, 189, 195, 202, 208
Offset: 1
-
Table[Ceiling[Sqrt[Sum[k^2, {k, 1, n}]]], {n, 1, 50}]
A005670
Mrs. Perkins's quilt: smallest coprime dissection of n X n square.
Original entry on oeis.org
1, 4, 6, 7, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
Offset: 1
Illustrating a(7) = 9: a dissection of a 7 X 7 square into 9 pieces, courtesy of _Ed Pegg Jr_:
.___.___.___.___.___.___.___
|...........|.......|.......|
|...........|.......|.......|
|...........|.......|.......|
|...........|___.___|___.___|
|...........|...|...|.......|
|___.___.___|___|___|.......|
|...............|...|.......|
|...............|___|___.___|
|...............|...........|
|...............|...........|
|...............|...........|
|...............|...........|
|...............|...........|
|___.___.___.___|___.___.___|
The Duijvestijn code for this is {{3,2,2},{1,1,2},{4,1},{3}}
Solutions for n = 1..10: 1 {{1}}
2 {{1, 1}, {1, 1}}
3 {{2, 1}, {1}, {1, 1, 1}}
4 {{2, 2}, {2, 1, 1}, {1, 1}}
5 {{3, 2}, {1, 1}, {2, 1, 2}, {1}}
6 {{3, 3}, {3, 2, 1}, {1}, {1, 1, 1}}
7 {{4, 3}, {1, 2}, {3, 1, 1}, {2, 2}}
8 {{4, 4}, {4, 2, 2}, {2, 1, 1}, {1, 1}}
9 {{5, 4}, {1, 1, 2}, {4, 2, 1}, {3}, {2}}
10 {{5, 5}, {5, 3, 2}, {1, 1}, {2, 1, 2}, {1}}
- H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, C3.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ed Wynn, Table of n, a(n) for n = 1..120
- J. H. Conway, Mrs. Perkins's quilt, Proc. Camb. Phil. Soc., 60 (1964), 363-368.
- A. J. W. Duijvestijn, Table I
- A. J. W. Duijvestijn, Table II
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Ed Pegg, Jr., Mrs Perkins's Quilts (best known values to 40000)
- G. B. Trustrum, Mrs Perkins's quilt, Proc. Cambridge Philos. Soc., 61 1965 7-11.
- Eric Weisstein's World of Mathematics, Mrs. Perkins's Quilt
- Ed Wynn, Exhaustive generation of 'Mrs Perkins's quilt' square dissections for low orders, arXiv:1308.5420 [math.CO], 2013-2014.
- Ed Wynn, Exhaustive generation of 'Mrs. Perkins's quilt' square dissections for low orders, Discrete Math. 334 (2014), 38--47. MR3240464
A365236
a(n) is the least number of integer-sided squares that can be packed together with the n squares 1 X 1, 2 X 2, ..., n X n to fill out a rectangle.
Original entry on oeis.org
0, 1, 1, 3, 2, 4, 3, 3, 4
Offset: 1
Compositions of rectangles that satisfy the minimal number of augmenting squares for n. Where more than one minimal composition exists for a given n, the table shows a single example. In the table body, the numbers include both the specific mandatory and augmenting squares. a(n) is the total number of squares in the rectangle minus n.
| 1^2 2^2 3^2 4^2 5^2 6^2 7^2 8^2 9^2 10^2 | Total
----------------------------------------------------------------------------
a(1) = 0 | 1 | 1
a(2) = 1 | 2 1 | 3
a(3) = 1 | 2 1 1 | 4
a(4) = 3 | 2 1 2 2 | 7
a(5) = 2 | 2 1 1 2 1 | 7
a(6) = 4 | 2 1 3 2 1 1 | 10
a(7) = 3 | 1 1 1 3 1 2 1 | 10
a(8) = 3 | 3 2 1 1 1 1 1 1 | 11
a(9) = 4 | 2 2 2 2 1 1 1 1 1 | 13
- Tamas Sandor Nagy, Examples for a(1) - a(4).
- Tamas Sandor Nagy, Example for a(5).
- Tamas Sandor Nagy, Example for a(6).
- Tamas Sandor Nagy, Original upper bound examples for a(7) with 5 augmenting squares and a(8) with 6 augmenting squares.
- Tamas Sandor Nagy, Example of a conjectured solution for a(10) with 5 augmenting squares, found by Peter Munn.
- Thomas Scheuerle, Example for a(6) with smallest possible area.
- Thomas Scheuerle, Example for a(7).
- Thomas Scheuerle, Example for a(8).
- Thomas Scheuerle, Example for a(9).
- Thomas Scheuerle, Original upper bound example for a(10) with 6 augmenting squares.
- Thomas Scheuerle, Example for a(11) = 4 this is at the same time also a conjectured solution for a(10) = 5.
Showing 1-3 of 3 results.
Comments