cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A259825 a(n) = 12*H(n) where H() is the Hurwitz class number.

Original entry on oeis.org

-1, 0, 0, 4, 6, 0, 0, 12, 12, 0, 0, 12, 16, 0, 0, 24, 18, 0, 0, 12, 24, 0, 0, 36, 24, 0, 0, 16, 24, 0, 0, 36, 36, 0, 0, 24, 30, 0, 0, 48, 24, 0, 0, 12, 48, 0, 0, 60, 40, 0, 0, 24, 24, 0, 0, 48, 48, 0, 0, 36, 48, 0, 0, 60, 42, 0, 0, 12, 48, 0, 0, 84, 36, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 05 2015

Keywords

Comments

Coefficients of q-expansion of Eisenstein series G_{3/2}(tau) multiplied by 12. - N. J. A. Sloane, Mar 16 2019

Examples

			G.f. = -1 + 4*x^3 + 6*x^4 + 12*x^7 + 12*x^8 + 12*x^11 + 16*x^12 + 24*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; gf[m_] := With[{r = Range[-m, m]}, -2 Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, r}]/EllipticTheta[3, 0, x] - 2 Sum[(-1)^k*x^(k^2 + 2 k)/(1 + x^(2 k))^2, {k, r}]/EllipticTheta[3, 0, -x]]; gf[terms // Sqrt // Ceiling] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Apr 02 2017 *)
    a[ n_] := If[ n<1, -Boole[n==0], With[{m = Floor[(-1 + Sqrt[1 + 4*n])/2]}, -2*SeriesCoefficient[ Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, -m-1,m}] / EllipticTheta[3, 0, x] + Sum[(-1)^k*x^(k^2 + 2*k)/(1 + x^(2*k))^2, {k, -m-2,m}]/ EllipticTheta[3, 0, -x], {x, 0, n}]]]; (* Michael Somos, Feb 04 2022 *)
  • PARI
    {a(n) = 12 * qfbhclassno(n)};
    
  • PARI
    {a(n) = my(D, f); 12 * if( n<1, (n==0)/-12, [D, f] = core(-n, 1); if( D%4>1 && !(f%2), D*=4; f/=2); if( D%4<2, qfbclassno(D) / max(1, D+6), 0) * sumdiv(f, d, moebius(d) * kronecker(D, d) * sigma(f/d)))};

Formula

a(n) = 12 * A058305(n) / A058306(n). a(4*n + 1) = a(4*n + 2) = 0. a(3*n + 4) = 6 * A259827(n).
a(4*n + 3) = 4 * A130695(n). a(8*n + 3) = A005886(n) = 2 * A005869(n) = 4 * A008443(n). a(12*n + 7) = 12 * A259655(n).
a(16*n + 4) = 6 * A045834(n) = 3 * A005876(n). a(16*n + 8) = 12 * A045828(n) = 6 * A005884(n) = 3 * A005877(n).
a(24*n + 3) = 4 * A213627(n). a(24*n + 7) = 12 * A185220(n). a(24*n + 11) = 12 * A213617(n). a(24*n + 19) = 12 * A181648(n). a(24*n + 23) = 12 * A188569(n+1).
a(32*n + 4) = 6 * A213022(n). a(32*n + 8) = 12 * A213625(n). a(32*n + 12) = 16 * A008443(n) = 8 * A005869(n) = 4 * A005886(n) = 2 * A005878(n). a(32*n + 20) = 24 * A045831(n) = 6 * A004024(n). a(32*n + 24) = 24 * A213624(n).
G.f.: -2 * (Sum_{k in Z} (-1)^k * x^(k*k + k) / (1 + (-x)^k)^2) / (Sum_{k in Z} x^k^2) - 2 * (Sum_{k in Z} (-1)^k * x^(k^2 + 2*k) / (1 + x^(2*k))^2) / (Sum_{k in Z} (-x)^k^2).
a(n) >= 0 if n > 0. - Michael Somos, Feb 04 2022

A045834 Half of theta series of cubic lattice with respect to edge.

Original entry on oeis.org

1, 4, 5, 4, 8, 8, 5, 12, 8, 4, 16, 12, 9, 12, 8, 12, 16, 16, 8, 16, 17, 8, 24, 8, 8, 28, 16, 12, 16, 20, 13, 24, 24, 8, 16, 16, 16, 28, 24, 12, 32, 16, 13, 28, 8, 20, 32, 32, 8, 20, 24, 16, 40, 16, 16, 32, 25, 20, 24, 24, 24, 28, 24, 8, 32, 36, 16, 44, 16, 12, 40, 32, 17, 36, 32
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 5*x^2 + 4*x^3 + 8*x^4 + 8*x^5 + 5*x^6 + 12*x^7 + 8*x^8 + ...
G.f. = q + 4*q^5 + 5*q^9 + 4*q^13 + 8*q^17 + 8*q^21 + 5*q^25 + 12*q^29 + ...
		

Crossrefs

Cf. A005876.

Programs

  • Maple
    S:= series((1/8)*JacobiTheta2(0, sqrt(q))^2*(JacobiTheta3(0, q^(1/4))+JacobiTheta4(0, q^(1/4)))/q^(1/4), q, 1001):
    seq(coeff(S,q,j),j=0..1000); # Robert Israel, Nov 13 2016
  • Mathematica
    s = EllipticTheta[3, 0, q]^2*EllipticTheta[2, 0, q]/(2*q^(1/4)) + O[q]^75; CoefficientList[s, q] (* Jean-François Alcover, Nov 04 2015, from 5th formula *)
    QP = QPochhammer; s = QP[q^2]^9/(QP[q]^4*QP[q^4]^2) + O[q]^80; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 +A)^9 / (eta(x + A)^4 * eta(x^4 + A)^2), n))}; /* Michael Somos, Feb 28 2006 */

Formula

Euler transform of period 4 sequence [ 4, -5, 4, -3,...]. - Michael Somos, Feb 28 2006
Expansion of theta_2(q^2)^2 * (theta_3(q) + theta_4(q)) / (8*q) in powers of q^4. - Michael Somos, Feb 28 2006
Expansion of q^(-1/4) * eta(q^2)^9 / (eta(q)^4 * eta(q^4)^2) in powers of q. - Michael Somos, Feb 28 2006
G.f.: Product_{k>0} (1 + x^k)^4 * (1 - x^(2*k))^3 / (1 + x^(2*k))^2. - Michael Somos, Feb 28 2006
Expansion of phi(x)^2 * psi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Oct 25 2006
A005876(n) = 2*a(n).

A116597 Expansion of theta_3(q) * theta_4(q^4)^2 in powers of q.

Original entry on oeis.org

1, 2, 0, 0, -2, -8, 0, 0, -4, 10, 0, 0, 8, -8, 0, 0, 6, 16, 0, 0, -8, -16, 0, 0, -8, 10, 0, 0, 0, -24, 0, 0, 12, 16, 0, 0, -10, -8, 0, 0, -8, 32, 0, 0, 24, -24, 0, 0, 8, 18, 0, 0, -8, -24, 0, 0, -16, 16, 0, 0, 0, -24, 0, 0, 6, 32, 0, 0, -16, -32, 0, 0, -12, 16, 0, 0, 24, -32, 0, 0, 24, 34, 0, 0, -16, -16, 0, 0, -8, 48
Offset: 0

Views

Author

Michael Somos, Feb 18 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q - 2*q^4 - 8*q^5 - 4*q^8 + 10*q^9 + 8*q^12 - 8*q^13 + 6*q^16 + 16*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^4]^2, {q, 0, n}]; (* Michael Somos, Apr 28 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * (eta(x^4 + A) / (eta(x + A) * eta(x^8 + A)))^2, n))};

Formula

Expansion of phi(q) * phi(-q^4)^2 in powers of q where phi() is a Ramanujan theta function.
Expansion of eta(q^2)^5 * (eta(q^4) / (eta(q) * eta(q^8)))^2 in powers of q.
Euler transform of period 8 sequence [ 2, -3, 2, -5, 2, -3, 2, -3, ...].
G.f.: theta_3(q) * theta_4(q^4)^2 = Product_{k>0} (1 - x^(2*k))^3 *((1 + x^k) / (1 + x^(4*k)))^2.
a(4*n + 2) = a(4*n + 3) = 0. a(n) = A080963(4*n). a(4*n) = A212885(n). a(4*n + 1) = (-1)^n * A005876(n).
a(3*n + 1) = 2 * A257536(n). - Michael Somos, Apr 28 2015

A246814 Expansion of phi(-q) * phi(-q^4)^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 0, -2, 8, 0, 0, -4, -10, 0, 0, 8, 8, 0, 0, 6, -16, 0, 0, -8, 16, 0, 0, -8, -10, 0, 0, 0, 24, 0, 0, 12, -16, 0, 0, -10, 8, 0, 0, -8, -32, 0, 0, 24, 24, 0, 0, 8, -18, 0, 0, -8, 24, 0, 0, -16, -16, 0, 0, 0, 24, 0, 0, 6, -32, 0, 0, -16, 32, 0, 0, -12
Offset: 0

Views

Author

Michael Somos, Sep 03 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q - 2*q^4 + 8*q^5 - 4*q^8 - 10*q^9 + 8*q^12 + 8*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^4]^2, {q, 0, n}]; Table[a[n], {n, 0, 80}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^4 / (eta(x^2 + A) * eta(x^8 + A)^2), n))};

Formula

Expansion of eta(q)^2 * eta(q^4)^4 / (eta(q^2) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, -1, -2, -5, -2, -1, -2, -3, ...].
a(n) = (-1)^(mod(n,4) = 1) * A116597(n).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A212885(n). a(4*n + 1) = -(-1)^n * A005876(n).
Showing 1-4 of 4 results.