cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A005875 Theta series of simple cubic lattice; also number of ways of writing a nonnegative integer n as a sum of 3 squares (zero being allowed).

Original entry on oeis.org

1, 6, 12, 8, 6, 24, 24, 0, 12, 30, 24, 24, 8, 24, 48, 0, 6, 48, 36, 24, 24, 48, 24, 0, 24, 30, 72, 32, 0, 72, 48, 0, 12, 48, 48, 48, 30, 24, 72, 0, 24, 96, 48, 24, 24, 72, 48, 0, 8, 54, 84, 48, 24, 72, 96, 0, 48, 48, 24, 72, 0, 72, 96, 0, 6, 96, 96, 24, 48, 96, 48, 0, 36, 48, 120
Offset: 0

Views

Author

Keywords

Comments

Number of ordered triples (i, j, k) of integers such that n = i^2 + j^2 + k^2.
The Madelung Coulomb energy for alternating unit charges in the simple cubic lattice is Sum_{n>=1} (-1)^n*a(n)/sqrt(n) = -A085469. - R. J. Mathar, Apr 29 2006
a(A004215(k))=0 for k=1,2,3,... but no other elements of {a(n)} are zero. - Graeme McRae, Jan 15 2007

Examples

			Order and signs are taken into account: a(1) = 6 from 1 = (+-1)^2 + 0^2 + 0^2, a(2) = 12 from 2 = (+-1)^2 + (+-1)^2 + 0^2; a(3) = 8 from 3 = (+-1)^2 + (+-1)^2 + (+-1)^2, etc.
G.f. =  1 + 6*q + 12*q^2 + 8*q^3 + 6*q^4 + 24*q^5 + 24*q^6 + 12*q^8 + 30*q^9 + 24*q^10 + ...
		

References

  • H. Cohen, Number Theory, Vol. 1: Tools and Diophantine Equations, Springer-Verlag, 2007, p. 317.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, Chapter V.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 109.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 54.
  • L. Kronecker, Crelle, Vol. LVII (1860), p. 248; Werke, Vol. IV, p. 188.
  • C. J. Moreno and S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman and Hall, 2006, p. 43.
  • T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.
  • W. Sierpiński, 1925. Teorja Liczb. pp. 1-410 (p.61).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 338, Eq. (B').

Crossrefs

Row d=3 of A122141 and of A319574, 3rd column of A286815.
Cf. A074590 (primitive solutions), A117609 (partial sums), A004215 (positions of zeros).
Analog for 4 squares: A000118.
x^2+y^2+k*z^2: A005875, A014455, A034933, A169783, A169784.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A005875List(len) = JacobiTheta3(len, 3)
    A005875List(75) |> println # Peter Luschny, Mar 12 2018
    
  • Magma
    Basis( ModularForms( Gamma1(4), 3/2), 75) [1]; /* Michael Somos, Jun 25 2014 */
    
  • Maple
    (sum(x^(m^2),m=-10..10))^3; seq(coeff(%,x,n), n=0..50);
    Alternative:
    A005875list := proc(len) series(JacobiTheta3(0, x)^3, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A005875list(75); # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[3,Range[0,80]] (* Harvey P. Dale, Jul 21 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3, {q, 0, n}]; (* Michael Somos, Jun 25 2014 *)
    a[ n_] := Length @ FindInstance[ n == x^2 + y^2 + z^2, {x, y, z}, Integers, 10^9]; (* Michael Somos, May 21 2015 *)
    QP = QPochhammer; CoefficientList[(QP[q^2]^5/(QP[q]*QP[q^4])^2)^3 + O[q]^80, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^3, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A) * eta(x^4 + A))^2)^3, n))}; /* Michael Somos, Jun 03 2012 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [ 1, 0, 0; 0, 1, 0; 0, 0, 1]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, May 21 2015 */
    
  • Python
    # uses Python code for A004018
    from math import isqrt
    def A005875(n): return A004018(n)+(sum(A004018(n-k**2) for k in range(1,isqrt(n)+1))<<1) # Chai Wah Wu, Jun 21 2024
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*3)
    Q.representation_number_list(75) # Peter Luschny, Jun 20 2014
    

Formula

A number n is representable as the sum of 3 squares iff n is not of the form 4^a (8k+7) (cf. A000378).
There is a classical formula (essentially due to Gauss):
For sums of 3 squares r_3(n): write (uniquely) -n=D(2^vf)^2, with D<0 fundamental discriminant, f odd, v>=-1. Then r_3(n) = 12L((D/.),0)(1-(D/2)) Sum_{d | f} mu(d)(D/d)sigma(f/d).
Here mu is the Moebius function, (D/2) and (D/d) are Kronecker-Legendre symbols, sigma is the sum of divisors function, L((D/.),0)=h(D)/(w(D)/2) is the value at 0 of the L function of the quadratic character (D/.), equal to the class number h(D) divided by 2 or 3 in the special cases D=-4 and -3. - Henri Cohen (Henri.Cohen(AT)math.u-bordeaux1.fr), May 12 2010
a(n) = 3*T(n) if n == 1,2,5,6 mod 8, = 2*T(n) if n == 3 mod 8, = 0 if n == 7 mod 8 and = a(n/4) if n == 0 mod 4, where T(n) = A117726(n). [Moreno-Wagstaff].
"If 12E(n) is the number of representations of n as a sum of three squares, then E(n) = 2F(n) - G(n) where G(n) = number of classes of determinant -n, F(n) = number of uneven classes." - Dickson, quoting Kronecker. [Cf. A117726.]
a(n) = Sum_{d^2|n} b(n/d^2), where b() = A074590() gives the number of primitive solutions.
Expansion of phi(q)^3 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Oct 25 2006.
Euler transform of period 4 sequence [ 6, -9, 6, -3, ...]. - Michael Somos, Oct 25 2006
G.f.: (Sum_{k in Z} x^(k^2))^3.
a(8*n + 7) = 0. a(4*n) = a(n).
a(n) = A004015(2*n) = A014455(2*n) = A004013(4*n) = A169783(4*n). a(4*n + 1) = 6 * A045834(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 5) = 24 * A045831(n). - Michael Somos, Jun 03 2012
a(4*n + 2) = 12 * A045828(n). - Michael Somos, Sep 03 2014
a(n) = (-1)^n * A213384(n). - Michael Somos, May 21 2015
a(n) = (6/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
a(n) = A004018(n) + 2*Sum_{k=1..floor(sqrt(n))} A004018(n - k^2). - Daniel Suteu, Aug 27 2021
Convolution cube of A000122. Convolution of A004018 and A000122. - R. J. Mathar, Aug 03 2025

Extensions

More terms from James Sellers, Aug 22 2000

A259825 a(n) = 12*H(n) where H() is the Hurwitz class number.

Original entry on oeis.org

-1, 0, 0, 4, 6, 0, 0, 12, 12, 0, 0, 12, 16, 0, 0, 24, 18, 0, 0, 12, 24, 0, 0, 36, 24, 0, 0, 16, 24, 0, 0, 36, 36, 0, 0, 24, 30, 0, 0, 48, 24, 0, 0, 12, 48, 0, 0, 60, 40, 0, 0, 24, 24, 0, 0, 48, 48, 0, 0, 36, 48, 0, 0, 60, 42, 0, 0, 12, 48, 0, 0, 84, 36, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 05 2015

Keywords

Comments

Coefficients of q-expansion of Eisenstein series G_{3/2}(tau) multiplied by 12. - N. J. A. Sloane, Mar 16 2019

Examples

			G.f. = -1 + 4*x^3 + 6*x^4 + 12*x^7 + 12*x^8 + 12*x^11 + 16*x^12 + 24*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; gf[m_] := With[{r = Range[-m, m]}, -2 Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, r}]/EllipticTheta[3, 0, x] - 2 Sum[(-1)^k*x^(k^2 + 2 k)/(1 + x^(2 k))^2, {k, r}]/EllipticTheta[3, 0, -x]]; gf[terms // Sqrt // Ceiling] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Apr 02 2017 *)
    a[ n_] := If[ n<1, -Boole[n==0], With[{m = Floor[(-1 + Sqrt[1 + 4*n])/2]}, -2*SeriesCoefficient[ Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, -m-1,m}] / EllipticTheta[3, 0, x] + Sum[(-1)^k*x^(k^2 + 2*k)/(1 + x^(2*k))^2, {k, -m-2,m}]/ EllipticTheta[3, 0, -x], {x, 0, n}]]]; (* Michael Somos, Feb 04 2022 *)
  • PARI
    {a(n) = 12 * qfbhclassno(n)};
    
  • PARI
    {a(n) = my(D, f); 12 * if( n<1, (n==0)/-12, [D, f] = core(-n, 1); if( D%4>1 && !(f%2), D*=4; f/=2); if( D%4<2, qfbclassno(D) / max(1, D+6), 0) * sumdiv(f, d, moebius(d) * kronecker(D, d) * sigma(f/d)))};

Formula

a(n) = 12 * A058305(n) / A058306(n). a(4*n + 1) = a(4*n + 2) = 0. a(3*n + 4) = 6 * A259827(n).
a(4*n + 3) = 4 * A130695(n). a(8*n + 3) = A005886(n) = 2 * A005869(n) = 4 * A008443(n). a(12*n + 7) = 12 * A259655(n).
a(16*n + 4) = 6 * A045834(n) = 3 * A005876(n). a(16*n + 8) = 12 * A045828(n) = 6 * A005884(n) = 3 * A005877(n).
a(24*n + 3) = 4 * A213627(n). a(24*n + 7) = 12 * A185220(n). a(24*n + 11) = 12 * A213617(n). a(24*n + 19) = 12 * A181648(n). a(24*n + 23) = 12 * A188569(n+1).
a(32*n + 4) = 6 * A213022(n). a(32*n + 8) = 12 * A213625(n). a(32*n + 12) = 16 * A008443(n) = 8 * A005869(n) = 4 * A005886(n) = 2 * A005878(n). a(32*n + 20) = 24 * A045831(n) = 6 * A004024(n). a(32*n + 24) = 24 * A213624(n).
G.f.: -2 * (Sum_{k in Z} (-1)^k * x^(k*k + k) / (1 + (-x)^k)^2) / (Sum_{k in Z} x^k^2) - 2 * (Sum_{k in Z} (-1)^k * x^(k^2 + 2*k) / (1 + x^(2*k))^2) / (Sum_{k in Z} (-x)^k^2).
a(n) >= 0 if n > 0. - Michael Somos, Feb 04 2022

A004013 Theta series of body-centered cubic (b.c.c.) lattice.

Original entry on oeis.org

1, 0, 0, 8, 6, 0, 0, 0, 12, 0, 0, 24, 8, 0, 0, 0, 6, 0, 0, 24, 24, 0, 0, 0, 24, 0, 0, 32, 0, 0, 0, 0, 12, 0, 0, 48, 30, 0, 0, 0, 24, 0, 0, 24, 24, 0, 0, 0, 8, 0, 0, 48, 24, 0, 0, 0, 48, 0, 0, 72, 0, 0, 0, 0, 6, 0, 0, 24, 48, 0, 0, 0, 36, 0, 0, 56, 24, 0, 0, 0, 24, 0, 0, 72, 48, 0, 0, 0, 24, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x^3 + 6*x^4 + 12*x^8 + 24*x^11 + 8*x^12 + 6*x^16 + 24*x^19 + 24*x^20 + ...
G.f. = 1 + 8*q^(3/2) + 6*q^2 + 12*q^4 + 24*q^(11/2) + 8*q^6 + 6*q^8 + 24*q^(19/2) + 24*q^10 + 24*q^12 + 32*q^(27/2) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 116.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(8), 3/2), 90) [1]; /* Michael Somos, Sep 04 2014 */
  • Maple
    M:=100; M1:=M*(M+1)/2; ph:=series(add(q^(k^2),k=-M..M),q,M1): ps:=series(add(q^(k*(k+1)/2),k=0..M),q,M1): t1:=series(subs(q=q^2, ph)^3, q,M1): t2:=series((2*sqrt(q))^3*subs(q=q^4, ps)^3,q,M1): t3:=seriestolist(series(subs(q=q^2,t1+t2),q,M1)): for n from 0 to nops(t3)-1 do lprint(n,t3[n+1]); od:
  • Mathematica
    m = 13; m1 = m*((m + 1)/2); ph[q_] = Series[ Sum[ q^k^2, {k, -m, m}], {q, 0, m1}]; ps[q_] = Series[ Sum[ q^(k*((k + 1)/2)), {k, 0, m}], {q, 0, m1}]; t1[q_] = Normal[ Series[ ph[q^2]^3, {q, 0, m1}]]; t2[q_] = Normal[ Series[ (2*Sqrt[q])^3*ps[q^4]^3, {q, 0, m1}]]; CoefficientList[ Series[ t1[q^2] + t2[q^2], {q, 0, m1}], q] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
    (* From version 6 on *) terms=91; f[q_] = LatticeData["BodyCenteredCubic", "ThetaSeriesFunction"][-I Log[q]/Pi]; CoefficientList[Simplify[f[q] + O[q]^terms, q>0], q][[1 ;; terms]] (* Jean-François Alcover, May 15 2013, updated Jul 08 2017 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^4]^3 + EllipticTheta[ 2, 0, x^4]^3, {x, 0, n}]; (* Michael Somos, May 24 2013 *)
  • PARI
    {a(n) = if( n<0, 0, if( n%4==0, n/=4; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x * O(x^n))^3, n), n%8==3, n\=8; 8*polcoeff( sum(k=0, (sqrtint(8*n+1) - 1)\2, x^((k^2 + k)/2), x * O(x^n))^3, n)))}; /* Michael Somos, Oct 25 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A)^5 / eta(x^4 + A)^2 / eta(x^16 + A)^2)^3 + (2 * x * eta(x^16 + A)^2 / eta(x^8 + A))^3, n))}; /* Michael Somos, May 17 2008 */
    

Formula

subs(q=q^2, ph)^3+(2*sqrt(q))^3*subs(q=q^4, ps)^3, where ps = A010054 = Sum_{k=0..infinity} q^(k*(k+1)/2), ph = A000122 = Sum_{k=-infinity, infinity} q^(k^2).
Expansion of phi(q^4)^3 + 8 * q^3 * psi(q^8)^3 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Oct 25 2006
a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = 0. a(4*n) = A005875(n).
Expansion of theta_3(q)^3 + theta_2(q)^3 in powers of q^(1/4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A004015.
a(8*n) = A004015(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 4) = 2 * A045826(n). - Michael Somos, Jul 19 2015
a(12*n + 4) = 6 * A213056(n). a(16*n + 4) = 6 * A045834(n). a(16*n + 8) = 12 * A045828(n).

A213384 Expansion of phi(-q)^3 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -6, 12, -8, 6, -24, 24, 0, 12, -30, 24, -24, 8, -24, 48, 0, 6, -48, 36, -24, 24, -48, 24, 0, 24, -30, 72, -32, 0, -72, 48, 0, 12, -48, 48, -48, 30, -24, 72, 0, 24, -96, 48, -24, 24, -72, 48, 0, 8, -54, 84, -48, 24, -72, 96, 0, 48, -48, 24, -72, 0, -72, 96
Offset: 0

Views

Author

Michael Somos, Jun 10 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 6*q + 12*q^2 - 8*q^3 + 6*q^4 - 24*q^5 + 24*q^6 + 12*q^8 - 30*q^9 + ...
		

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A213384List(len) = JacobiTheta4(len, 3)
    A213384List(63) |> println # Peter Luschny, Mar 12 2018
  • Magma
    A := Basis( ModularForms( Gamma0(16), 3/2), 63); A[1] - 6*A[2] + 12*A[3] - 8*A[4]; /* Michael Somos, May 21 2015 */
    
  • Mathematica
    a[ n_] := (-1)^n SquaresR[ 3, n]; (* Michael Somos, May 21 2015 *)
    a[ n_] := (-1)^n Length @ FindInstance[ n == x^2 + y^2 + z^2, {x, y, z}, Integers, 10^9]; (* Michael Somos, May 21 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^3, {q, 0, n}]; (* Michael Somos, May 21 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^2 / QPochhammer[ q^2])^3, {q, 0, n}]; (* Michael Somos, May 21 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 / eta(x^2 + A))^3, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * (-x)^k^2, 1 + x * O(x^n))^3, n))}; /* Michael Somos, May 21 2015 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [ 1, 0, 0; 0, 1, 0; 0, 0, 1]; (-1)^n * polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, May 21 2015 */
    

Formula

Expansion of (eta(q)^2 / eta(q^2))^3 in powers of q.
Euler transform of period 2 sequence [ -6, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(15/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A008443.
G.f.: (Sum_{k in Z} (-1)^k * x^k^2)^3.
a(n) = (-1)^n * A005875(n). a(2*n) = A004015(n). a(2*n + 1) = -2 * A045826(n). a(4*n) = A005875(n). a(4*n + 1) = -6 * A045834(n). a(4*n + 2) = 12 * A045828(n). a(8*n + 3) = -8 * A008443(n). a(8*n + 7) = 0.

A212885 Expansion of phi(q) * phi(-q)^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, -4, 8, 6, -8, -8, 0, 12, -10, -8, 24, 8, -8, -16, 0, 6, -16, -12, 24, 24, -16, -8, 0, 24, -10, -24, 32, 0, -24, -16, 0, 12, -16, -16, 48, 30, -8, -24, 0, 24, -32, -16, 24, 24, -24, -16, 0, 8, -18, -28, 48, 24, -24, -32, 0, 48, -16, -8, 72, 0, -24, -32
Offset: 0

Views

Author

Michael Somos, May 29 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q - 4*q^2 + 8*q^3 + 6*q^4 - 8*q^5 - 8*q^6 + 12*q^8 - 10*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]* EllipticTheta[3, 0, -q]^2, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Nov 30 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x + A)^2 / eta(x^4 + A)^2, n))};

Formula

Expansion of phi(-x) * phi(-x^2)^2 = phi(-x^2)^4 / phi(x) in powers of x where phi() is a Ramanujan theta function.
Expansion of eta(q^2)^3 * eta(q)^2 / eta(q^4)^2 in powers of q.
Euler transform of period 4 sequence [-2, -5, -2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 32 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A045828.
G.f.: Product_{k>0} (1 - x^(2*k))^3 * (1 - x^k)^2 / (1 - x^(4*k))^2.
a(4*n) = A005875(n). a(4*n + 1) = -2 * A045834(n). a(4*n + 2) = - A005877(n) = -4 * A045828(n).
a(8*n) = A004015(n). a(8*n + 3) = A005878(n) = 8 * A008443(n). a(8*n + 4)= A005887(n). a(8*n + 5) = -2 * A004024(n). a(8*n + 6) = -8 * A213624(n). a(8*n + 7) = 0.

A005876 Theta series of cubic lattice with respect to edge.

Original entry on oeis.org

2, 8, 10, 8, 16, 16, 10, 24, 16, 8, 32, 24, 18, 24, 16, 24, 32, 32, 16, 32, 34, 16, 48, 16, 16, 56, 32, 24, 32, 40, 26, 48, 48, 16, 32, 32, 32, 56, 48, 24, 64, 32, 26, 56, 16, 40, 64, 64, 16, 40, 48, 32, 80, 32, 32, 64, 50, 40, 48, 48, 48, 56, 48, 16, 64, 72, 32, 88, 32, 24
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A045834.

Programs

  • Mathematica
    s = EllipticTheta[3, 0, q]^2*EllipticTheta[2, 0, q]/q^(1/4) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 04 2015, from 1st formula *)
    s = (2*(QPochhammer[q^2]^9/(QPochhammer[q]^4*QPochhammer[q^4]^2))) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015, from 3rd formula *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); 2*polcoeff( eta(x^2+A)^9/ eta(x+A)^4/eta(x^4+A)^2, n))} /* Michael Somos, Feb 21 2006 */

Formula

a(n) = 2*A045834(n).
Expansion of 2*phi(q)*psi(q)^2 in powers of q where phi(),psi() are Ramanujan theta functions. - Michael Somos, Feb 21 2006
Expansion of theta_2(q^2)^2(theta_3(q)+theta_4(q))/(4q) in powers of q^4. - Michael Somos, Feb 21 2006
Expansion of 2q^(-1/4)eta(q^2)^9/(eta(q)^4*eta(q^4)^2) in powers of q. - Michael Somos, Feb 21 2006
G.f.: 2*Product_{k>0} (1+x^k)^4*(1-x^(2k))^3/(1+x^(2k))^2. - Michael Somos, Feb 21 2006

A033717 Number of integer solutions to the equation x^2 + 2*y^2 + 4*z^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 8, 8, 6, 6, 8, 4, 8, 12, 0, 8, 12, 8, 10, 12, 8, 8, 24, 8, 8, 14, 8, 16, 16, 4, 0, 16, 6, 16, 16, 8, 12, 20, 24, 8, 24, 8, 16, 20, 8, 20, 0, 16, 24, 18, 10, 8, 24, 12, 32, 24, 0, 16, 24, 12, 16, 20, 0, 24, 12, 8, 16, 28, 16, 16, 48, 8, 30, 32, 8, 20, 24, 16, 0, 16, 24, 18
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 4*q^4 + 4*q^5 + 8*q^6 + 8*q^7 + 6*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p 102 eq 9.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 3/2), 82); A[1] + 2*A[2] + 2*A[3] + 4*A[4] + 4*A[5] + 4*A[6] + 8*A[7] + 8*A[8] + 6*A[9] + 8*A[10] + 4*A[11]; /* Michael Somos, Sep 03 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^4], {q, 0, n}]; (* Michael Somos, Sep 03 2014 *)
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [1, 0, 0; 0, 2, 0; 0, 0, 4]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n)), n))}; /* Michael Somos, Sep 03 2014 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A) * eta(x^8 + A)^3 / (eta(x + A)^2 * eta(x^16 + A)^2), n))}; /* Michael Somos, Sep 03 2014 */
    

Formula

Expansion of phi(q) * phi(q^2) * phi(q^4) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Sep 03 2014
Euler transform of period 16 sequence [2, -1, 2, -2, 2, -1, 2, -5, 2, -1, 2, -2, 2, -1, 2, -3, ...]. - Michael Somos, Sep 03 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8 (t/i)^(3/2) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 03 2014
a(2*n + 1) = 2 * A045828(n). a(4*n) = A014455(n). a(4*n + 1) = 2 * A213625(n). a(4*n + 2) = 2 * A246811(n). a(4*n + 3) = 4 * A213624(n). - Michael Somos, Sep 03 2014
a(8*n) = A005875(n). a(8*n + 1) = 2 * A213622(n). a(8*n + 2) = 2 * A045834(n). a(8*n + 7) = 8 * A033763(n). - Michael Somos, Sep 03 2014
a(16*n) = A004015(n). a(16*n + 2) = 2 * A213022(n). a(16*n + 6) = 8 *
A008443(n). a(16*n + 8) = 2 * A045826(n). a(16*n + 10) = 8 * A045831(n). a(16*n + 14) = 0. - Michael Somos, Sep 03 2014
G.f.: theta_3(q) * theta_3(q^2) * theta_3(q^4).

A246811 Expansion of phi(x)^2 * psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 4, 0, 5, 12, 4, 0, 8, 12, 8, 0, 5, 16, 12, 0, 8, 24, 4, 0, 16, 12, 12, 0, 9, 24, 12, 0, 8, 36, 12, 0, 16, 12, 16, 0, 8, 28, 16, 0, 17, 36, 8, 0, 24, 24, 8, 0, 8, 36, 28, 0, 16, 36, 12, 0, 16, 24, 20, 0, 13, 24, 24, 0, 24, 60, 8, 0, 16, 36, 16, 0, 16, 28
Offset: 0

Views

Author

Michael Somos, Sep 03 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 4*x^2 + 5*x^4 + 12*x^5 + 4*x^6 + 8*x^8 + 12*x^9 + ...
G.f. = q + 4*q^3 + 4*q^5 + 5*q^9 + 12*q^11 + 4*q^13 + 8*q^17 + 12*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 EllipticTheta[ 2, 0, x^2] / (2 x^(1/2)), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^4 / (16 x^(1/2) EllipticTheta[ 3, 0, x^2]), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^8 + A)^2 / (eta(x + A)^4 * eta(x^4 + A)^5), n))};

Formula

Expansion of psi(x)^4 / phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^2)^10 * eta(q^8)^2 / (eta(q)^4 * eta(q^4)^5) in powers of q.
Euler transform of period 8 sequence [4, -6, 4, -1, 4, -6, 4, -3, ...].
2 * a(n) = A033717(4*n + 2). a(2*n) = A045834(n). a(4*n) = A213022(n). a(4*n + 1) = 4 * A008443(n). a(4*n + 2) = 4 * A045831(n). a(4*n + 3) = 0.

A246954 Expansion of phi(-x) * psi(-x)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -4, 5, -4, 8, -8, 5, -12, 8, -4, 16, -12, 9, -12, 8, -12, 16, -16, 8, -16, 17, -8, 24, -8, 8, -28, 16, -12, 16, -20, 13, -24, 24, -8, 16, -16, 16, -28, 24, -12, 32, -16, 13, -28, 8, -20, 32, -32, 8, -20, 24, -16, 40, -16, 16, -32, 25, -20, 24, -24, 24, -28
Offset: 0

Views

Author

Michael Somos, Sep 08 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*x + 5*x^2 - 4*x^3 + 8*x^4 - 8*x^5 + 5*x^6 - 12*x^7 + 8*x^8 + ...
G.f. = q - 4*q^5 + 5*q^9 - 4*q^13 + 8*q^17 - 8*q^21 + 5*q^25 - 12*q^29 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^2 EllipticTheta[ 2, 0, x]/(2 x^(1/4)), {x, 0, n}]; Table[a[n], {n, 0, 60}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^4 + A)^2 / eta(x^2 + A)^3, n))};

Formula

Expansion of phi(-x)^2 * psi(x^2) = psi(-x)^4 / psi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q)^4 * eta(q^4)^2 / eta(q^2)^3 in powers of q.
Euler transform of period 4 sequence [ -4, -1, -4, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 16 * (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A246953.
G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^(2*k))^2 / (1 + x^k).
a(n) = (-1)^n * A045834(n). a(2*n) = A213022(n). a(2*n + 1) = - 4 * A045831(n).

A004025 Theta series of b.c.c. lattice with respect to long edge.

Original entry on oeis.org

2, 4, 0, 0, 8, 8, 0, 0, 10, 8, 0, 0, 8, 16, 0, 0, 16, 12, 0, 0, 16, 8, 0, 0, 10, 24, 0, 0, 24, 16, 0, 0, 16, 16, 0, 0, 8, 24, 0, 0, 32, 16, 0, 0, 24, 16, 0, 0, 18, 28, 0, 0, 24, 32, 0, 0, 16, 8, 0, 0, 24, 32, 0, 0, 32, 32, 0, 0, 32, 16, 0, 0, 16, 40, 0, 0, 32
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The body-centered cubic (b.c.c. also known as D3*) lattice is the set of all triples [a, b, c] where the entries are all integers or all one half an odd integer. A long edge is centered at a triple with two integer entries and the remaining entry is one half an odd integer. - Michael Somos, May 31 2012

Examples

			2*q + 4*q^2 + 8*q^5 + 8*q^6 + 10*q^9 + 8*q^10 + 8*q^13 + 16*q^14 + 16*q^17 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[2*QPochhammer[x^2+A]^5 * (QPochhammer[x^8+A]^4 / (QPochhammer[x+A]^2*QPochhammer[x^4+A]^4)), {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^4 / (eta(x + A)^2 * eta(x^4 + A)^4), n))} /* Michael Somos, May 31 2012 */

Formula

From Michael Somos, May 31 2012: (Start)
Expansion of 2 * x * phi(x) * psi(x^4)^2 = 2 * x * psi(-x^2)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of 2 * eta(q^2)^5 * eta(q^8)^4 / (eta(q)^2 * eta(q^4)^4) in powers of q.
a(4*n) = a(4*n + 3) = 0. a(n) = 2 * A045836(n). a(4*n + 1) = 2 * A045834(n). a(4*n + 2) = 4 * A045828(n). (End)
Showing 1-10 of 15 results. Next