cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005912 Truncated cube numbers.

Original entry on oeis.org

1, 56, 311, 920, 2037, 3816, 6411, 9976, 14665, 20632, 28031, 37016, 47741, 60360, 75027, 91896, 111121, 132856, 157255, 184472, 214661, 247976, 284571, 324600, 368217, 415576, 466831, 522136, 581645, 645512, 713891, 786936, 864801, 947640, 1035607, 1128856
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a005912 n = (n * (n * (77 * n + 69) + 19) + 3) `div` 3 :: Integer
    -- Reinhard Zumkeller, Aug 09 2014
    
  • Magma
    [(3*n+1)^3-8*(n)*(n+1)*(n+2)/6: n in [0..40]] // Vincenzo Librandi, Aug 09 2014
    
  • Maple
    A005912:=(1+52*z+93*z**2+8*z**3)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(3n+1)^3-8(n)(n+1)(n+2)/6,{n,0,30}] (* or *) LinearRecurrence[ {4,-6,4,-1},{1,56,311,920},30] (* Harvey P. Dale, Aug 14 2011 *)
  • PARI
    a(n)=(3*n+1)^3-8*(n)*(n+1)*(n+2)/6 \\ Charles R Greathouse IV, Feb 10 2017

Formula

a(n) = (3*n+1)^3 - 8*(n)*(n+1)*(n+2)/6 = (77/3)*n^3 + 23*n^2 + (19/3)*n + 1.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=56, a(2)=311, a(3)=920. - Harvey P. Dale, Aug 14 2011

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999