cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A206399 a(0) = 1; for n > 0, a(n) = 41*n^2 + 2.

Original entry on oeis.org

1, 43, 166, 371, 658, 1027, 1478, 2011, 2626, 3323, 4102, 4963, 5906, 6931, 8038, 9227, 10498, 11851, 13286, 14803, 16402, 18083, 19846, 21691, 23618, 25627, 27718, 29891, 32146, 34483, 36902, 39403, 41986, 44651, 47398, 50227, 53138, 56131, 59206, 62363, 65602
Offset: 0

Views

Author

Bruno Berselli, Feb 07 2012

Keywords

Comments

Apart from the first term, numbers of the form (r^2 + 2*s^2)*n^2 + 2 = (r*n)^2 + (s*n - 1)^2 + (s*n + 1)^2: in this case is r = 3, s = 4. After 1, all terms are in A000408.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 41*n^2+2: n in [0..39]];
    
  • Magma
    I:=[1,43,166,371]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..41]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Join[{1}, 41 Range[39]^2 + 2]
    CoefficientList[Series[(1 + x) (1 + 39 x + x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=if(n,41*n^2+2,1) \\ Charles R Greathouse IV, Sep 24 2015

Formula

O.g.f.: (1 + x)*(1 + 39*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*(41*x^2 + 41*x + 2) - 1. - Elmo R. Oliveira, Nov 29 2024

A010018 a(0) = 1, a(n) = 28*n^2 + 2 for n>0.

Original entry on oeis.org

1, 30, 114, 254, 450, 702, 1010, 1374, 1794, 2270, 2802, 3390, 4034, 4734, 5490, 6302, 7170, 8094, 9074, 10110, 11202, 12350, 13554, 14814, 16130, 17502, 18930, 20414, 21954, 23550, 25202, 26910, 28674, 30494, 32370, 34302, 36290, 38334, 40434, 42590, 44802
Offset: 0

Views

Author

Keywords

Comments

First bisection of A005919. - Bruno Berselli, Feb 07 2012
a(n) = the second level of difference between the sum of the terms in the n+1 X n+1 matrices and those in the n X n matrices starting at n=1 for an array constructed by using the terms in A016813 as the antidiagonals; the first few antidiagonals are 1; 5,9; 13,17,21; 25,29,33,37. - J. M. Bergot, Jul 05 2013
[More formally: (sum[m(n+1),j {j=0..n+1}]+sum[m(i,n+1) {i=0..n}]) - (sum[m(n,j) {j=0...n}] + sum[m(i,n) {i=0..n-1}])=a(n)]
[The first five rows begin: 1,9,21,37,57; 5,17,33,53,77; 13,29,49,73,101;25,45,69,97,129; 41,65,93,125,161]

Crossrefs

Cf. A206399.

Programs

  • Mathematica
    Join[{1}, 28 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    LinearRecurrence[{3, -3, 1}, {1, 30, 114, 254}, 40] (* Robert G. Wilson v, Jul 06 2013 *)

Formula

G.f.: (1+x)*(1+26*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*28+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(14)/56*Pi*coth(Pi/sqrt 14) = 1.05615979263340... - R. J. Mathar, May 07 2024
a(n) = 2*A158482(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A195314(n)+A195314(n+1). - R. J. Mathar, May 07 2024
Showing 1-2 of 2 results.