cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005994 Alkane (or paraffin) numbers l(7,n).

Original entry on oeis.org

1, 3, 9, 19, 38, 66, 110, 170, 255, 365, 511, 693, 924, 1204, 1548, 1956, 2445, 3015, 3685, 4455, 5346, 6358, 7514, 8814, 10283, 11921, 13755, 15785, 18040, 20520, 23256, 26248, 29529, 33099, 36993, 41211, 45790, 50730, 56070, 61810, 67991
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Equals A000217 (1, 3, 6, 10, 15, ...) convolved with A193356 (1, 0, 3, 0, 5, ...). - Gary W. Adamson, Feb 16 2009
F(1,4,n) is the number of bracelets with 1 blue, 4 red and n black beads. If F(1,4,1)=3 and F(1,4,2)=9 taken as a base;
F(1,4,n) = n(n+1)(n+2)/6+F(1,2,n) + F(1,4,n-2). [F(1,2,n) is the number of bracelets with 1 blue, 2 red and n black beads. If F(1,2,1)=2 and F(1,2,2)=4 taken as a base F(1,2,n)=n+1+F(1,2,n-2)]. - Ata Aydin Uslu and Hamdi G. Ozmenekse, Jan 11 2012
a(A254338(n)) = 6 for n > 0. - Reinhard Zumkeller, Feb 27 2015

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006009, A005997, A005993 (first differences).

Programs

  • Haskell
    --  Following Gary W. Adamson.
    import Data.List (inits, intersperse)
    a005994 n = a005994_list !! n
    a005994_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
                       tail $ inits $ tail a000217_list
    -- Reinhard Zumkeller, Feb 27 2015
  • Maple
    a:= n -> (Matrix([[1, 0$4, 1, 3]]). Matrix(7, (i,j)-> if (i=j-1) then 1 elif j=1 then [3, -1, -5, 5, 1, -3, 1][i] else 0 fi)^n)[1,1]: seq (a(n), n=0..40); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,3,9,19,38,66,110},50] (* or *) CoefficientList[Series[(1+x^2)/((1-x)^3(1-x^2)^2),{x,0,50}],x] (* Harvey P. Dale, May 02 2011 *)
    nn=45;With[{a=Accumulate[Range[nn]],b=Riffle[Range[1,nn,2],0]}, Flatten[ Table[ListConvolve[Take[a,n],Take[b,n]],{n,nn}]]] (* Harvey P. Dale, Nov 11 2011 *)
  • PARI
    {a(n)=if(n<-4, n=-5-n); polcoeff( (1+x^2)/((1-x)^3*(1-x^2)^2)+x*O(x^n), n)} /* Michael Somos, Mar 08 2007 */
    

Formula

G.f.: (1+x^2)/((1-x)^3*(1-x^2)^2) = (1+x^2)/((1-x)^5*(1+x)^2).
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(-5-n)=a(n). - Michael Somos, Mar 08 2007
Euler transform of length 4 sequence [3, 3, 0, -1]. - Michael Somos, Mar 08 2007
a(n) = 3a(n-1) - a(n-2) - 5a(n-3) + 5a(n-4) + a(n-5) - 3a(n-6) + a(n-7), with a(0)=1, a(1)=3, a(2)=9, a(4)=19, a(5)=38, a(6)=66, a(7)=110. - Harvey P. Dale, May 02 2011
a(n) = A006009(n)/2 - A000332(n+4) = ((1/2)*Sum_{i=1..n+1} (i+1)*floor((i+1)^2/2)) - binomial(n+4,4). - Enrique Pérez Herrero, May 11 2012
a(n) = (1/48)*(n+1)*(n+3)*((n+2)*(n+4)+3)+1/32*(2*n+5)*(1+(-1)^n). - Yosu Yurramendi, Jun 20 2013
Conjecture: a(n)+a(n+1) = A203286(n+1). - R. J. Mathar, Mar 08 2025