cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006049 Numbers k such that k and k+1 have the same number of distinct prime divisors.

Original entry on oeis.org

2, 3, 4, 7, 8, 14, 16, 20, 21, 31, 33, 34, 35, 38, 39, 44, 45, 50, 51, 54, 55, 56, 57, 62, 68, 74, 75, 76, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 111, 115, 116, 117, 118, 122, 123, 127, 133, 134, 135, 141, 142, 143, 144, 145, 146, 147, 152, 158, 159, 160, 161, 171, 175
Offset: 1

Views

Author

Keywords

Comments

Sequence is infinite, as proved by Schlage-Puchta, who comments: "Buttkewitz found a non-computational proof, and the Goldston-Pintz-Yildirim-sieve yields more precise information". - Charles R Greathouse IV, Jan 09 2013
The asymptotic density of this sequence is 0 (Erdős, 1936). - Amiram Eldar, Sep 17 2024

References

  • Calvin C. Clawson, Mathematical mysteries, Plenum Press, 1996, p. 250.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a006049 n = a006049_list !! (n-1)
    a006049_list = map (+ 1) $ elemIndices 0 $
       zipWith (-) (tail a001221_list) a001221_list
    -- Reinhard Zumkeller, Jan 22 2013
  • Mathematica
    f[n_] := Length@FactorInteger[n];t = f /@ Range[175];Flatten@Position[Rest[t] - Most[t], 0] (* Ray Chandler, Mar 27 2007 *)
    Select[Range[200],PrimeNu[#]==PrimeNu[#+1]&] (* Harvey P. Dale, May 09 2012 *)
    Flatten[Position[Partition[PrimeNu[Range[200]],2,1],?(#[[1]]==#[[2]]&),{1},Heads->False]] (* _Harvey P. Dale, May 22 2015 *)
    SequencePosition[PrimeNu[Range[200]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 02 2019 *)
  • PARI
    is(n)=omega(n)==omega(n+1) \\ Charles R Greathouse IV, Jan 09 2013
    

Formula

A001221(a(n)) = A001221(a(n)+1). - Reinhard Zumkeller, Jan 22 2013

Extensions

Extended by Ray Chandler, Mar 27 2007