cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A107800 a(n) = number of distinct primes dividing A006049(n) (and dividing A006049(n)+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Leroy Quet, Mar 24 2007

Keywords

Comments

a(n) first equals 3 when n is such that A006049(n) = 230.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@FactorInteger[n];t = f /@ Range[300];f /@ Flatten@Position[Rest[t] - Most[t], 0] (* Ray Chandler, Mar 27 2007 *)

Formula

a(n) = A001221(A006049(n)).

Extensions

Extended by Ray Chandler, Mar 27 2007

A075041 Erroneous version of A006049.

Original entry on oeis.org

2, 14, 16, 20, 21, 31, 33, 34, 35, 38, 39, 44, 45, 50, 51, 54, 55, 56, 57, 62, 68, 74, 75, 76, 85, 86, 87
Offset: 1

Views

Author

Amarnath Murthy, Sep 03 2002

Keywords

Comments

This appears to be either an erroneous version of A045920 or an erroneous version of A006049. - R. J. Mathar, Aug 13 2012

Crossrefs

Cf. A045983.

A006073 Numbers k such that k, k+1 and k+2 all have the same number of distinct prime divisors.

Original entry on oeis.org

2, 3, 7, 20, 33, 34, 38, 44, 50, 54, 55, 56, 74, 75, 85, 86, 91, 92, 93, 94, 98, 115, 116, 117, 122, 133, 134, 141, 142, 143, 144, 145, 146, 158, 159, 160, 175, 176, 183, 187, 200, 201, 205, 206, 207, 212, 213, 214, 215, 216, 217, 224, 235, 247
Offset: 1

Views

Author

Keywords

Comments

Distinct prime divisors means that the prime divisors are counted without multiplicity. - Harvey P. Dale, Apr 19 2011

Crossrefs

Programs

Formula

Union of {2,3,7} and A364307 and A364308 and A364309 and A364266 and A364265 etc. - R. J. Mathar, Jul 18 2023

A045983 Numbers k such that n or more consecutive integers starting at k have the same number of distinct prime divisors.

Original entry on oeis.org

1, 2, 2, 2, 54, 91, 141, 141, 44360, 48919, 218972, 526095, 526095, 526095, 17233173, 127890362, 29138958036, 118968284928, 118968284928, 585927201062, 585927201062, 585927201062, 585927201062, 313978488186061, 453918847597184, 453918847597184, 455626105596320
Offset: 1

Views

Author

Keywords

Comments

a(n) = smallest number k such that the n numbers from k through n+k-1 have the same number of prime divisors.
a(24) > 10^12. - Donovan Johnson, Mar 29 2013
a(28) > 2 * 10^15. - Toshitaka Suzuki, Jun 22 2025

Examples

			a(5) = 54 as 54, 55, 56, 57, 58 all have 2 prime divisors.
		

Crossrefs

Programs

  • PARI
    v=vector(16); n=0; c1=0; for(k=1, 127890377, c2=omega(k); if(c1==c2, n++; if(v[n]==0, v[n]=k-n+1; print(n " " v[n])), n=1; c1=c2)) /* Donovan Johnson, Mar 29 2013 */

Extensions

a(18)-a(23) from Donovan Johnson, Mar 29 2013
a(24)-a(27) from Toshitaka Suzuki, Jun 22 2025

A058933 Let k be bigomega(n) (i.e., n is a k-almost-prime). a(n) = number of k-almost-primes <= n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 3, 4, 5, 2, 6, 5, 6, 1, 7, 3, 8, 4, 7, 8, 9, 2, 9, 10, 5, 6, 10, 7, 11, 1, 11, 12, 13, 3, 12, 14, 15, 4, 13, 8, 14, 9, 10, 16, 15, 2, 17, 11, 18, 12, 16, 5, 19, 6, 20, 21, 17, 7, 18, 22, 13, 1, 23, 14, 19, 15, 24, 16, 20, 3, 21, 25, 17, 18, 26, 19, 22, 4, 8, 27, 23
Offset: 1

Views

Author

Naohiro Nomoto, Jan 11 2001

Keywords

Comments

Equivalently, the number of positive integers less than or equal to n with the same number of prime factors as n, counted with multiplicity. - Gus Wiseman, Dec 28 2018
There is a close relationship between a(n) and a(n^2). See A209934 for an exploratory quantification. - Peter Munn, Aug 04 2019

Examples

			3 is prime, so a(3)=2. 10 is 2-almost prime (semiprime), so a(10)=4.
From _Gus Wiseman_, Dec 28 2018: (Start)
Column n lists the a(n) positive integers less than or equal to n with the same number of prime factors as n, counted with multiplicity:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
        2     3  4  5     6  9   7   8   11  10  14      13  12  17  18
              2     3     4  6   5       7   9   10      11  8   13  12
                    2        4   3       5   6   9       7       11  8
                                 2       3   4   6       5       7
                                         2       4       3       5
                                                         2       3
                                                                 2
(End)
		

Crossrefs

Positions of 1's are A000079.
Equivalent sequence restricted to squarefree numbers: A340313.

Programs

  • Maple
    p:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= numtheory[bigomega](n);
          p(t):= p(t)+1
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    p[] = 0; a[n] := a[n] = Module[{t}, t = PrimeOmega[n]; p[t] = p[t]+1]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 24 2017, after Alois P. Heinz *)
  • PARI
    a(n) = my(k=bigomega(n)); sum(i=1, n, bigomega(i)==k); \\ Michel Marcus, Jun 27 2024
    
  • Python
    from math import prod, isqrt
    from sympy import isprime, primepi, primerange, integer_nthroot, primeomega
    def A058933(n):
        if n==1: return 1
        if isprime(n): return primepi(n)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,primeomega(n)))) # Chai Wah Wu, Aug 28 2024

Formula

Ordinal transform of A001222 (bigomega). - Franklin T. Adams-Watters, Aug 28 2006
If a(n) < a(3^A001222(2n)) = A078843(A001222(2n)) then a(2n) = a(n), otherwise a(2n) > a(n). - Peter Munn, Aug 05 2019

Extensions

Name edited by Peter Munn, Dec 30 2022

A045932 Numbers n such that n through n+3 are divisible by the same number of distinct primes.

Original entry on oeis.org

2, 33, 54, 55, 74, 85, 91, 92, 93, 115, 116, 133, 141, 142, 143, 144, 145, 158, 159, 175, 200, 205, 206, 212, 213, 214, 215, 216, 247, 295, 296, 301, 302, 323, 324, 325, 326, 332, 391, 392, 422, 445, 451, 535, 536, 542, 565, 632, 685, 686, 721, 722, 799, 800
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Range[900],4,1],Length[Union[PrimeNu[#]]] == 1&]][[1]] (* Harvey P. Dale, Apr 12 2013 *)

A074851 Numbers k such that k and k+1 both have exactly 2 distinct prime factors.

Original entry on oeis.org

14, 20, 21, 33, 34, 35, 38, 39, 44, 45, 50, 51, 54, 55, 56, 57, 62, 68, 74, 75, 76, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 111, 115, 116, 117, 118, 122, 123, 133, 134, 135, 141, 142, 143, 144, 145, 146, 147, 152, 158, 159, 160, 161, 171, 175, 176, 177, 183, 184
Offset: 1

Views

Author

Benoit Cloitre, Sep 10 2002

Keywords

Comments

Subsequence of A006049. - Michel Marcus, May 06 2016

Examples

			20=2^2*5 21=3*7 hence 20 is in the sequence.
		

Crossrefs

Analogous sequences for m distinct prime factors: this sequence (m=2), A140077 (m=3), A140078 (m=4), A140079 (m=5), A273879 (m=6).
Cf. A093548.
Equals A255346 \ A321502.

Programs

  • GAP
    Filtered([1..200],n->[Size(Set(Factors(n))),Size(Set(Factors(n+1)))]=[2,2]); # Muniru A Asiru, Dec 05 2018
    
  • Magma
    [n: n in [2..200] | #PrimeDivisors(n) eq 2 and #PrimeDivisors(n+1) eq 2]; // Vincenzo Librandi, Dec 05 2018
    
  • Mathematica
    Flatten[Position[Partition[Table[If[PrimeNu[n]==2,1,0],{n,200}],2,1],{1,1}]] (* Harvey P. Dale, Mar 12 2015 *)
  • PARI
    isok(n) = (omega(n) == 2) && (omega(n+1) == 2); \\ Michel Marcus, May 06 2016
    
  • Python
    import sympy
    from sympy.ntheory.factor_ import primenu
    for n in range(1,200):
        if primenu(n)==2 and primenu(n+1)==2:
            print(n, end=', '); # Stefano Spezia, Dec 05 2018

Formula

a(n) seems to be asymptotic to c*n*log(n)^2 with c=0.13...
{k: A001221(k) = A001221(k+1) = 2}. - R. J. Mathar, Jul 18 2023

A067003 Number of numbers <= n with same number of distinct prime factors as n.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 5, 6, 7, 2, 8, 3, 9, 4, 5, 10, 11, 6, 12, 7, 8, 9, 13, 10, 14, 11, 15, 12, 16, 1, 17, 18, 13, 14, 15, 16, 19, 17, 18, 19, 20, 2, 21, 20, 21, 22, 22, 23, 23, 24, 25, 26, 24, 27, 28, 29, 30, 31, 25, 3, 26, 32, 33, 27, 34, 4, 28, 35, 36, 5, 29, 37, 30, 38, 39, 40, 41
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2001

Keywords

Examples

			a(11)=8 since 2,3,4,5,7,8,9,11 each have one distinct prime factor. a(12)=3 since 6,10,12 each have two distinct prime factors.
From _Gus Wiseman_, Dec 28 2018: (Start)
Column n lists the a(n) positive integers less than or equal to n with the same number of distinct prime factors as n:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
        2  3  4     5  7  8  6   9   10  11  12  14  13  16  15  17  18
           2  3     4  5  7      8   6   9   10  12  11  13  14  16  15
              2     3  4  5      7       8   6   10  9   11  12  13  14
                    2  3  4      5       7       6   8   9   10  11  12
                       2  3      4       5           7   8   6   9   10
                          2      3       4           5   7       8   6
                                 2       3           4   5       7
                                         2           3   4       5
                                                     2   3       4
                                                         2       3
                                                                 2
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[n],PrimeNu[#]==PrimeNu[n]&]],{n,100}] (* Gus Wiseman, Dec 28 2018 *)
  • PARI
    a(n) = my(nb = #factor(n)~); sum(k=1, n, #factor(k)~ == nb); \\ Michel Marcus, Jul 13 2019

Formula

a(A002110(n)) = 1.

A343819 Numbers k such that k and k+1 have the same number of Fermi-Dirac factors (A064547).

Original entry on oeis.org

2, 3, 4, 14, 16, 20, 21, 26, 27, 32, 33, 34, 35, 38, 44, 45, 50, 51, 57, 62, 63, 64, 68, 74, 75, 76, 85, 86, 91, 92, 93, 94, 98, 99, 104, 111, 115, 116, 117, 118, 122, 123, 124, 133, 135, 141, 142, 143, 144, 145, 146, 147, 158, 161, 171, 175, 176, 177, 187, 189
Offset: 1

Views

Author

Amiram Eldar, Apr 30 2021

Keywords

Comments

Since the number of infinitary divisors of k is A037445(k) = 2^A064547(k), this is also the sequence of numbers k such that k and k+1 have the same number of infinitary divisors.

Examples

			2 is a term since A064547(2) = A064547(3) = 1.
		

Crossrefs

Similar sequences: A005237, A006049.
Subsequence of A086263.

Programs

  • Mathematica
    fd[1] = 0; fd[n_] := Plus @@ DigitCount[FactorInteger[n][[;;,2]], 2, 1]; Select[Range[200], fd[#] == fd[# + 1] &]

A294277 Numbers k such that omega(k) < omega(k+1) (where omega(m) = A001221(m), the number of distinct primes dividing m).

Original entry on oeis.org

1, 5, 9, 11, 13, 17, 19, 23, 25, 27, 29, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 89, 97, 101, 103, 104, 107, 109, 113, 119, 121, 125, 128, 129, 131, 137, 139, 149, 151, 153, 155, 157, 163, 164, 167, 169, 173, 179, 181, 185
Offset: 1

Views

Author

Rémy Sigrist, Oct 26 2017

Keywords

Comments

This sequence, alongside A006049 and A294278, form a partition of the positive integers.
The asymptotic density of this sequence is 1/2 (Erdős, 1936). - Amiram Eldar, Sep 17 2024

Examples

			omega(1) = 0 < omega(2) = 1, hence 1 belongs to this sequence.
omega(4) = 1 = omega(5) = 1, hence 4 does not belong to this sequence.
omega(6) = 2 > omega(7) = 1, hence 6 does not belong to this sequence.
		

Crossrefs

Programs

Showing 1-10 of 38 results. Next