cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A006049 Numbers k such that k and k+1 have the same number of distinct prime divisors.

Original entry on oeis.org

2, 3, 4, 7, 8, 14, 16, 20, 21, 31, 33, 34, 35, 38, 39, 44, 45, 50, 51, 54, 55, 56, 57, 62, 68, 74, 75, 76, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 111, 115, 116, 117, 118, 122, 123, 127, 133, 134, 135, 141, 142, 143, 144, 145, 146, 147, 152, 158, 159, 160, 161, 171, 175
Offset: 1

Views

Author

Keywords

Comments

Sequence is infinite, as proved by Schlage-Puchta, who comments: "Buttkewitz found a non-computational proof, and the Goldston-Pintz-Yildirim-sieve yields more precise information". - Charles R Greathouse IV, Jan 09 2013
The asymptotic density of this sequence is 0 (Erdős, 1936). - Amiram Eldar, Sep 17 2024

References

  • Calvin C. Clawson, Mathematical mysteries, Plenum Press, 1996, p. 250.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a006049 n = a006049_list !! (n-1)
    a006049_list = map (+ 1) $ elemIndices 0 $
       zipWith (-) (tail a001221_list) a001221_list
    -- Reinhard Zumkeller, Jan 22 2013
  • Mathematica
    f[n_] := Length@FactorInteger[n];t = f /@ Range[175];Flatten@Position[Rest[t] - Most[t], 0] (* Ray Chandler, Mar 27 2007 *)
    Select[Range[200],PrimeNu[#]==PrimeNu[#+1]&] (* Harvey P. Dale, May 09 2012 *)
    Flatten[Position[Partition[PrimeNu[Range[200]],2,1],?(#[[1]]==#[[2]]&),{1},Heads->False]] (* _Harvey P. Dale, May 22 2015 *)
    SequencePosition[PrimeNu[Range[200]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 02 2019 *)
  • PARI
    is(n)=omega(n)==omega(n+1) \\ Charles R Greathouse IV, Jan 09 2013
    

Formula

A001221(a(n)) = A001221(a(n)+1). - Reinhard Zumkeller, Jan 22 2013

Extensions

Extended by Ray Chandler, Mar 27 2007

A045939 Numbers m such that the factorizations of m..m+2 have the same number of primes (including multiplicities).

Original entry on oeis.org

33, 85, 93, 121, 141, 170, 201, 213, 217, 244, 284, 301, 393, 428, 434, 445, 506, 602, 603, 604, 633, 637, 697, 841, 921, 962, 1041, 1074, 1083, 1084, 1130, 1137, 1244, 1261, 1274, 1309, 1345, 1401, 1412, 1430, 1434, 1448, 1490, 1532, 1556, 1586, 1604
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), this sequence (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
A056809 is a subsequence.
Cf. A006073. - Harvey P. Dale, Apr 19 2011

Programs

  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2],AppendTo[lst,n]],{n,0,7!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    pd2Q[n_]:=PrimeOmega[n]==PrimeOmega[n+1]==PrimeOmega[n+2]; Select[Range[1700],pd2Q]  (* Harvey P. Dale, Apr 19 2011 *)
    SequencePosition[PrimeOmega[Range[1700]],{x_,x_,x_}][[;;,1]] (* Harvey P. Dale, Mar 08 2023 *)
  • PARI
    is(n)=my(t=bigomega(n)); bigomega(n+1)==t && bigomega(n+2)==t \\ Charles R Greathouse IV, Sep 14 2015
    
  • PARI
    list(lim)=my(v=List(),a=1,b=1,c); forfactored(n=4,lim\1+2,c=bigomega(n); if(a==b&&a==c, listput(v,n[1]-2)); a=b; b=c); Vec(v) \\ Charles R Greathouse IV, May 07 2020

A055927 Numbers k such that k + 1 has one more divisor than k.

Original entry on oeis.org

1, 3, 9, 15, 25, 63, 121, 195, 255, 361, 483, 729, 841, 1443, 3363, 3481, 3721, 5041, 6241, 10201, 15625, 17161, 18224, 19321, 24963, 31683, 32761, 39601, 58564, 59049, 65535, 73441, 88208, 110889, 121801, 143641, 145923, 149769, 167281
Offset: 1

Views

Author

Labos Elemer, Jul 21 2000

Keywords

Comments

Numbers k such that d(k+1) - d(k) = 1, where d(k) is A000005(k), the number of divisors.
Numbers k such that A049820(k) = A049820(k+1). - Jaroslav Krizek, Feb 10 2014
Numbers k such that A051950(k+1) = 1. - Danny Rorabaugh, Oct 05 2017

Examples

			a(4) = 15, as 15 has 4 and 16 has 5 divisors. a(6) = 63, as 63 and 64 have 6 and 7 divisors respectively.
		

Crossrefs

Numbers where repetition occurs in A049820.

Programs

  • Mathematica
    Select[ Range[ 200000], DivisorSigma[0, # ] + 1 == DivisorSigma[0, # + 1] &]
    Position[Differences[DivisorSigma[0,Range[170000]]],1]//Flatten (* Harvey P. Dale, Jul 06 2025 *)
  • PARI
    for(n=1,1000,if(numdiv(n+1)-numdiv(n)==1,print1(n,", "))); /* Joerg Arndt, Apr 09 2011 */

Extensions

More terms from David W. Wilson, Sep 06 2000, who remarks that every element is of form n^2 or n^2 - 1.

A045932 Numbers n such that n through n+3 are divisible by the same number of distinct primes.

Original entry on oeis.org

2, 33, 54, 55, 74, 85, 91, 92, 93, 115, 116, 133, 141, 142, 143, 144, 145, 158, 159, 175, 200, 205, 206, 212, 213, 214, 215, 216, 247, 295, 296, 301, 302, 323, 324, 325, 326, 332, 391, 392, 422, 445, 451, 535, 536, 542, 565, 632, 685, 686, 721, 722, 799, 800
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Range[900],4,1],Length[Union[PrimeNu[#]]] == 1&]][[1]] (* Harvey P. Dale, Apr 12 2013 *)

A045938 Numbers n such that n through n+9 are divisible by the same number of distinct primes.

Original entry on oeis.org

48919, 184171, 218972, 218973, 320085, 320671, 343443, 353944, 397322, 403117, 435721, 492037, 526095, 526096, 526097, 526098, 526099, 534078, 534079, 534080, 583340, 607116, 636332, 693841, 701595, 761492, 822260, 919998, 942528
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Offset corrected by Amiram Eldar, Oct 26 2019

A364266 The first term in a chain of at least 3 consecutive numbers each with exactly 5 distinct prime factors.

Original entry on oeis.org

1042404, 3460280, 3818828, 3998664, 4638984, 4991964, 5540248, 5701254, 5715500, 5964958, 6772050, 6794084, 7237384, 7453964, 7459088, 7745318, 7757034, 7993194, 8083634, 8153430, 8168194, 8273628, 8340834, 8340980, 8414756, 8486994, 8698898, 8722634, 8758904
Offset: 1

Views

Author

R. J. Mathar, Jul 16 2023

Keywords

Examples

			1042404 = 2^2*3*11*53*149, 1042405 = 5*6*143*29*79 and 1042406 = 2*17*23*31*43 each have 5 distinct prime factors, so 1042404 is in the sequence.
		

Crossrefs

Cf. A192203 (subsequence for squarefree triples). Subsequence of A140079 (2 consec.) and of A006073.
Cf. A364308 (3 dist. factors), A364309 (4 dist. factors), A364265 (6 dist. factors), A001221, A087978.

Programs

  • Maple
    omega := proc(n)
        nops(numtheory[factorset](n)) ;
    end proc:
    for k from 1 do
        if omega(k) = 5 then
            if omega(k+1) = 5 then
                if omega(k+2) = 5 then
                    print(k) ;
                end if;
            end if;
        end if;
    end do:
  • Mathematica
    seq[lim_] := Module[{s  = {}, q1 = False, q2 = False, q3}, Do[q3 = PrimeNu[k] == 5; If[q1 && q2 && q3, AppendTo[s, k-2]]; q1 = q2; q2 = q3, {k, 3, lim}]; s]; seq[10^7] (* Amiram Eldar, Oct 01 2024 *)

Formula

a(1) = A087978(3).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 5}. - R. J. Mathar, Jul 18 2023

A045933 Numbers n such that n through n+4 are divisible by the same number of distinct primes.

Original entry on oeis.org

54, 91, 92, 115, 141, 142, 143, 144, 158, 205, 212, 213, 214, 215, 295, 301, 323, 324, 325, 391, 535, 685, 721, 799, 1135, 1345, 1465, 1535, 1711, 1941, 1981, 2101, 2215, 2302, 2303, 2304, 2425, 2641, 2664, 2714, 3865, 3912, 4411, 5450, 5461, 6354, 6505
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    SequencePosition[PrimeNu[Range[7000]],{x_,x_,x_,x_,x_}][[All,1]] (* Harvey P. Dale, Jun 13 2022 *)

A338453 Starts of runs of 3 consecutive numbers with the same total binary weight of their divisors (A093653).

Original entry on oeis.org

3, 242, 243, 1837, 2361, 3693, 3728, 6061, 6457, 9782, 11181, 11721, 13855, 15177, 20017, 22591, 28021, 31461, 31887, 33098, 33993, 38137, 52016, 52112, 60321, 76897, 78542, 78745, 80461, 108394, 116017, 119541, 124453, 125493, 127117, 127417, 145369, 151805, 154113
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2020

Keywords

Comments

Numbers k such that A093653(k) = A093653(k+1) = A093653(k+2).

Examples

			3 is a term since A093653(3) = A093653(4) = A093653(5) = 3.
		

Crossrefs

Cf. A093653.
Subsequence of A338452.
Similar sequences: A005238, A006073, A045939.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; m = 3; fs = f /@ Range[m]; Do[If[Equal @@  fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 155000}]; s
    SequencePosition[Table[Total[DigitCount[Divisors[n],2,1]],{n,160000}],{x_,x_,x_}][[All,1]] (* Harvey P. Dale, Feb 04 2023 *)

A364307 Numbers k such that k, k+1 and k+2 have exactly 2 distinct prime factors.

Original entry on oeis.org

20, 33, 34, 38, 44, 50, 54, 55, 56, 74, 75, 85, 86, 91, 92, 93, 94, 98, 115, 116, 117, 122, 133, 134, 141, 142, 143, 144, 145, 146, 158, 159, 160, 175, 176, 183, 187, 200, 201, 205, 206, 207, 212, 213, 214, 215, 216, 217, 224, 235, 247, 248, 295, 296
Offset: 1

Views

Author

R. J. Mathar, Jul 18 2023

Keywords

Examples

			44 = 2^2*11 has 2 distinct prime factors, and so has 45 = 3^2*5 and so has 46 = 2*23, so 44 is in the sequence.
		

Crossrefs

Subsequence of A006073 and of A074851.
Cf. A364308 (3 factors), A364309 (4 factors), A364266 (5 factors), A364265 (6 factors), A001221.
A039833 is a subsequence.

Programs

  • Mathematica
    q[n_] := q[n] = PrimeNu[n] == 2; Select[Range[300], q[#] && q[#+1] && q[#+2] &] (* Amiram Eldar, Oct 01 2024 *)

Formula

{k: A001221(k) = A001221(k+1) = A001221(k+2) = 2}.

A364308 Numbers k such that k, k+1 and k+2 have exactly 3 distinct prime factors.

Original entry on oeis.org

644, 740, 804, 986, 1034, 1064, 1104, 1220, 1274, 1308, 1309, 1462, 1494, 1580, 1748, 1884, 1885, 1924, 1988, 2013, 2014, 2108, 2134, 2254, 2288, 2294, 2330, 2354, 2364, 2408, 2464, 2484, 2540, 2583, 2584, 2664, 2665, 2666, 2678, 2684, 2714, 2715, 2716, 2754, 2793
Offset: 1

Views

Author

R. J. Mathar, Jul 18 2023

Keywords

Examples

			644 = 2^2*7*23 has 3 distinct prime factors, 645 = 3*5*43 has 3 distinct prime factors, and 646 = 2*17*19 has 3 distinct prime factors, so 644 is in the sequence.
		

Crossrefs

Subsequence of A006073 and of A140077.
Cf. A364307 (2 factors), A364309 (4 factors), A364266 (5 factors), A364265 (6 factors), A001221, A080569.

Programs

  • Mathematica
    q[n_] := q[n] = PrimeNu[n] == 3; Select[Range[3000], q[#] && q[#+1] && q[#+2] &] (* Amiram Eldar, Oct 01 2024 *)

Formula

a(1) = A080569(3).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 3}.
Showing 1-10 of 20 results. Next