cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A075042 Duplicate of A045983.

Original entry on oeis.org

1, 2, 2, 2, 54, 91, 141, 141, 44360, 48919, 218972, 526095, 526095, 526095
Offset: 1

Views

Author

Keywords

A055927 Numbers k such that k + 1 has one more divisor than k.

Original entry on oeis.org

1, 3, 9, 15, 25, 63, 121, 195, 255, 361, 483, 729, 841, 1443, 3363, 3481, 3721, 5041, 6241, 10201, 15625, 17161, 18224, 19321, 24963, 31683, 32761, 39601, 58564, 59049, 65535, 73441, 88208, 110889, 121801, 143641, 145923, 149769, 167281
Offset: 1

Views

Author

Labos Elemer, Jul 21 2000

Keywords

Comments

Numbers k such that d(k+1) - d(k) = 1, where d(k) is A000005(k), the number of divisors.
Numbers k such that A049820(k) = A049820(k+1). - Jaroslav Krizek, Feb 10 2014
Numbers k such that A051950(k+1) = 1. - Danny Rorabaugh, Oct 05 2017

Examples

			a(4) = 15, as 15 has 4 and 16 has 5 divisors. a(6) = 63, as 63 and 64 have 6 and 7 divisors respectively.
		

Crossrefs

Numbers where repetition occurs in A049820.

Programs

  • Mathematica
    Select[ Range[ 200000], DivisorSigma[0, # ] + 1 == DivisorSigma[0, # + 1] &]
    Position[Differences[DivisorSigma[0,Range[170000]]],1]//Flatten (* Harvey P. Dale, Jul 06 2025 *)
  • PARI
    for(n=1,1000,if(numdiv(n+1)-numdiv(n)==1,print1(n,", "))); /* Joerg Arndt, Apr 09 2011 */

Extensions

More terms from David W. Wilson, Sep 06 2000, who remarks that every element is of form n^2 or n^2 - 1.

A075046 a(n) = the smallest number k such that the number of divisors of the n numbers from k through k+n-1 are in nondescending order.

Original entry on oeis.org

1, 1, 1, 1, 241, 241, 12853, 12853, 234613, 376741, 78312721, 125938261, 4019167441, 16586155153, 35237422882, 1296230533473, 42301168491121, 61118966262061
Offset: 1

Views

Author

Amarnath Murthy, Sep 03 2002

Keywords

Comments

tau(k) <= tau(k+1) <= ... <= tau(k+n-1).
a(16) > 10^12. - Donovan Johnson, Oct 13 2009
a(17) > 10^13. - Giovanni Resta, Apr 12 2017
a(19) > 2.64*10^15. - Jud McCranie, Mar 27 2019
If a(n) > 1, then A013632(a(n)) >= n. Might be useful to help speed up brute force search. - Chai Wah Wu, May 04 2017

Examples

			a(5) = 241 = a(6) as tau(241) = 2 < tau(242) = tau(243) = tau(244) = tau(245) = 6 < tau(246).
		

Crossrefs

Programs

  • Mathematica
    k = 1; Do[ While[t = Table[ DivisorSigma[0, i], {i, k, k + n - 1}]; t != Sort[t], k++ ]; Print[k], {n, 1, 11}]

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
a(11) from Robert G. Wilson v, Sep 07 2003
a(12)-a(15) from Donovan Johnson, Oct 13 2009
a(16) from Fred Schneider, Mar 29 2017
a(17)-a(18) from Jud McCranie, Mar 27 2019

A318166 a(n) begins the first run of at least n consecutive numbers with the same number of infinitary divisors.

Original entry on oeis.org

1, 2, 2, 2, 32, 141, 141, 141, 42410, 171890, 2648985, 10896843, 10896843, 727940625, 1791416073, 19183907363, 62520703916, 162891847444, 162891847444, 349662337209, 7858045724108
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

The infinitary version of A006558.

Examples

			a(5) = 32 since the number of infinitary divisors of 32, 33, 34, 35 and 36 is 4, and this is the first run of 5 consecutive numbers.
		

Crossrefs

Programs

  • Mathematica
    idivnum[1] = 1; idivnum[n_] := Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[All, 2]]]; Seq[n_, q_] := Map[idivnum, Range[n, n + q - 1]]; findConsec[q_, nmin_, nmax_] := Module[{}, s = Seq[1, q]; n = q + 1; found = False;  Do[If[CountDistinct[s] == 1, found = True; Break[]]; s = Rest[AppendTo[s, idivnum[n]]]; n++, {k, nmin, nmax}]; If[found, n - q, 0]]; seq = {1}; nmax = 10000000; Do[n1 = Last[seq]; s1 = findConsec[m, n1, nmax]; If[s1 == 0, Break[]]; AppendTo[seq, s1], {m, 2, 11}];

Extensions

a(12)-a(21) from Giovanni Resta, Aug 24 2018

A324593 a(n) is the smallest number k such that n consecutive integers starting at k have the same number of odd divisors (A001227).

Original entry on oeis.org

1, 1, 5, 10, 10, 515, 2314, 2314, 1536863, 4053992, 4053992, 18584686, 146237365, 163039279, 4775943486, 13147233734, 86153130379
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 03 2019

Keywords

Examples

			515 has 4 odd divisors {1, 5, 103, 515}, 516 has 4 odd divisors {1, 3, 43, 129}, 517 has 4 odd divisors {1, 11, 47, 517}, 518 has 4 odd divisors {1, 7, 37, 259}, 519 has 4 odd divisors {1, 3, 173, 519} and 520 has 4 odd divisors {1, 5, 13, 65}. These the first 6 consecutive numbers with the same number of odd divisors, so a(6) = 515.
		

Crossrefs

Programs

  • C
    See Links section.

Extensions

a(11)-a(14) from Rémy Sigrist, Sep 04 2019
a(15)-a(17) from Giovanni Resta, Sep 04 2019

A324594 a(n) is the smallest number k such that n consecutive integers starting at k have the same number of nonprime divisors (A033273).

Original entry on oeis.org

1, 1, 1, 19940, 204323, 294590, 310042685, 2587701932494, 2587701932494
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 03 2019

Keywords

Examples

			19940 has 9 nonprime divisors {1, 4, 10, 20, 1994, 3988, 4985, 9970, 19940}, 19941 has 9 nonprime divisors {1, 51, 69, 289, 391, 867, 1173, 6647, 19941}, 19942 has 9 nonprime divisors {1, 26, 118, 169, 338, 767, 1534, 9971, 19942} and 19943 has 9 nonprime divisors {1, 49, 77, 259, 407, 539, 1813, 2849, 19943}. These the first 4 consecutive numbers with the same number of nonprime divisors, so a(4) = 19940.
		

Crossrefs

Programs

  • C
    See Links section.

Extensions

a(7) from Rémy Sigrist, Sep 04 2019
a(8)-a(9) from Giovanni Resta, Sep 04 2019

A323253 a(n) is the smallest number k such that factorizations of n consecutive integers starting at k have the same excess of number of primes counted with multiplicity over number of primes counted without multiplicity (A046660).

Original entry on oeis.org

1, 1, 1, 844, 74849, 671346, 8870025
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 30 2019

Keywords

Comments

Smallest number k such that n or more consecutive integers starting at k have the same number of proper prime power divisors.
a(8) > 10^9. - Vaclav Kotesovec, Sep 01 2019
a(8) <= 254023231417746. - David A. Corneth, Sep 01 2019
a(8) > 10^13. - Giovanni Resta, Sep 05 2019

Examples

			671346 = 2 * 3^2 * 13 * 19 * 151,
671347 = 17^2 * 23 * 101,
671348 = 2^2 * 47 * 3571,
671349 = 3 * 7^2 * 4567,
671350 = 2 * 5^2 * 29 * 463,
671351 = 53^2 * 239.
These the first 6 consecutive numbers with the same number of proper prime power divisors, so a(6) = 671346.
		

Crossrefs

Programs

  • Mathematica
    Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[PrimeOmega[j] - PrimeNu[j], {j, k, k + n - 1}]]] == 1, find = 1; Print[k]]], {n, 1, 5}] (* Vaclav Kotesovec, Sep 01 2019 *)
    (* faster program *) fak = Table[f = FactorInteger[j]; Total[Transpose[f][[2]]] - Length[f], {j, 1, 10000000}]; m = Max[fak]; Table[Min[Table[SequencePosition[fak, ConstantArray[j, n]], {j, 0, m}]], {n, 1, 7}] (* Vaclav Kotesovec, Sep 01 2019 *)
  • PARI
    excess(n) = bigomega(n) - omega(n);
    score(n) = my(t=excess(n)); for(k=1, oo, if(excess(n+k) != t, return(k)));
    upto(nn) = my(n=1); for(k=1, nn, while(score(k) >= n, print1(k, ", "); n++)); \\ Daniel Suteu, Sep 01 2019

Extensions

a(7) from Daniel Suteu and Vaclav Kotesovec, Sep 01 2019

A075044 a(0) = 1; a(n) = the smallest number k such that n numbers from k to k+n-1 have n distinct prime divisors, or 0 if no such number exists.

Original entry on oeis.org

1, 2, 14, 644, 134043, 129963314, 626804494291
Offset: 0

Views

Author

Amarnath Murthy, Sep 03 2002

Keywords

Comments

a(7) <= 45164156742722455667280. - Giorgos Kalogeropoulos, Apr 10 2025

Crossrefs

Programs

  • Mathematica
    Do[k = 1; While[Length /@ FactorInteger /@ Range[k, k+n-1] != Table[n, {n}], k++ ]; Print[k], {n, 0, 5}] (* Ryan Propper, Oct 01 2005 *)

Extensions

Corrected and extended by Ryan Propper, Oct 01 2005
Offset corrected and a(6) from Donovan Johnson, Aug 03 2009

A304463 a(n) begins the first run of at least n consecutive numbers with the same number of bi-unitary divisors.

Original entry on oeis.org

1, 2, 2, 2, 91, 6850, 6850, 10281, 108771, 171890, 3760204, 3760204, 727940626, 5704384304, 13264434091, 13264434091, 63719307522, 287480681209, 607635436331
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

The bi-unitary version of A006558.
a(20) > 5*10^12. - Giovanni Resta, Aug 23 2018

Examples

			a(5) = 91 since the number of bi-unitary divisors of 91, 92, 93, 94 and 95 is 4, and this is the first run of 5 consecutive numbers.
		

Crossrefs

Cf. A006558, A045983 (equivalent for unitary divisors), A286324.

Programs

  • Mathematica
    bdivnum[1] = 1; bdivnum[n_] := Times @@ ((# + Mod[#, 2]) & /@ Last /@ FactorInteger[n]); Seq[n_, q_] := Map[bdivnum, Range[n, n + q - 1]]; findConsec[q_, nmin_, nmax_] := Module[{}, s = Seq[1, q]; n = q + 1; found = False; Do[If[CountDistinct[s] == 1, found = True; Break[]]; s = Rest[AppendTo[s, bdivnum[n]]]; n++, {k, nmin, nmax}]; If[found, n - q, 0]]; seq = {1}; nmax = 100000000; Do[n1 = Last[seq]; s1 = findConsec[m, n1, nmax]; If[s1 == 0, Break[]]; AppendTo[seq, s1], {m, 2, 13}];

Extensions

a(14)-a(19) from Giovanni Resta, Aug 23 2018

A338628 a(n) is the smallest number k such that n consecutive integers starting at k have the same number of square divisors (A046951).

Original entry on oeis.org

1, 1, 1, 844, 3624, 22020, 671346, 8870024, 264459172, 463239475, 1407472722, 108494875170, 12385053656370, 145065154350545
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2020

Keywords

Examples

			844 has 2 square divisors {1, 4}, 845 has 2 square divisors {1, 169}, 846 has 2 square divisors {1, 9} and 847 has 2 square divisors {1, 121}. These are the first 4 consecutive numbers with the same number of square divisors, so a(4) = 844.
		

Crossrefs

Programs

  • Mathematica
    Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[Length[Select[Divisors[j], IntegerQ[Sqrt[#]] &]], {j, k, k + n - 1}]]] == 1, find = 1; Print[k]]], {n, 1, 7}]
  • PARI
    isok(n, k) = #Set(apply(x->sumdiv(x, d, issquare(d)), vector(n, i, k+i-1))) == 1;
    a(n) = my(k=1); while(! isok(n, k), k++); k; \\ Michel Marcus, Nov 05 2020

Extensions

a(8)-a(11) from Amiram Eldar, Nov 04 2020
a(12)-a(14) from Martin Ehrenstein, Jul 19 2023
Showing 1-10 of 17 results. Next