A075042 Duplicate of A045983.
1, 2, 2, 2, 54, 91, 141, 141, 44360, 48919, 218972, 526095, 526095, 526095
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(4) = 15, as 15 has 4 and 16 has 5 divisors. a(6) = 63, as 63 and 64 have 6 and 7 divisors respectively.
Select[ Range[ 200000], DivisorSigma[0, # ] + 1 == DivisorSigma[0, # + 1] &] Position[Differences[DivisorSigma[0,Range[170000]]],1]//Flatten (* Harvey P. Dale, Jul 06 2025 *)
for(n=1,1000,if(numdiv(n+1)-numdiv(n)==1,print1(n,", "))); /* Joerg Arndt, Apr 09 2011 */
a(5) = 241 = a(6) as tau(241) = 2 < tau(242) = tau(243) = tau(244) = tau(245) = 6 < tau(246).
k = 1; Do[ While[t = Table[ DivisorSigma[0, i], {i, k, k + n - 1}]; t != Sort[t], k++ ]; Print[k], {n, 1, 11}]
a(5) = 32 since the number of infinitary divisors of 32, 33, 34, 35 and 36 is 4, and this is the first run of 5 consecutive numbers.
idivnum[1] = 1; idivnum[n_] := Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[All, 2]]]; Seq[n_, q_] := Map[idivnum, Range[n, n + q - 1]]; findConsec[q_, nmin_, nmax_] := Module[{}, s = Seq[1, q]; n = q + 1; found = False; Do[If[CountDistinct[s] == 1, found = True; Break[]]; s = Rest[AppendTo[s, idivnum[n]]]; n++, {k, nmin, nmax}]; If[found, n - q, 0]]; seq = {1}; nmax = 10000000; Do[n1 = Last[seq]; s1 = findConsec[m, n1, nmax]; If[s1 == 0, Break[]]; AppendTo[seq, s1], {m, 2, 11}];
515 has 4 odd divisors {1, 5, 103, 515}, 516 has 4 odd divisors {1, 3, 43, 129}, 517 has 4 odd divisors {1, 11, 47, 517}, 518 has 4 odd divisors {1, 7, 37, 259}, 519 has 4 odd divisors {1, 3, 173, 519} and 520 has 4 odd divisors {1, 5, 13, 65}. These the first 6 consecutive numbers with the same number of odd divisors, so a(6) = 515.
See Links section.
19940 has 9 nonprime divisors {1, 4, 10, 20, 1994, 3988, 4985, 9970, 19940}, 19941 has 9 nonprime divisors {1, 51, 69, 289, 391, 867, 1173, 6647, 19941}, 19942 has 9 nonprime divisors {1, 26, 118, 169, 338, 767, 1534, 9971, 19942} and 19943 has 9 nonprime divisors {1, 49, 77, 259, 407, 539, 1813, 2849, 19943}. These the first 4 consecutive numbers with the same number of nonprime divisors, so a(4) = 19940.
See Links section.
671346 = 2 * 3^2 * 13 * 19 * 151, 671347 = 17^2 * 23 * 101, 671348 = 2^2 * 47 * 3571, 671349 = 3 * 7^2 * 4567, 671350 = 2 * 5^2 * 29 * 463, 671351 = 53^2 * 239. These the first 6 consecutive numbers with the same number of proper prime power divisors, so a(6) = 671346.
Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[PrimeOmega[j] - PrimeNu[j], {j, k, k + n - 1}]]] == 1, find = 1; Print[k]]], {n, 1, 5}] (* Vaclav Kotesovec, Sep 01 2019 *) (* faster program *) fak = Table[f = FactorInteger[j]; Total[Transpose[f][[2]]] - Length[f], {j, 1, 10000000}]; m = Max[fak]; Table[Min[Table[SequencePosition[fak, ConstantArray[j, n]], {j, 0, m}]], {n, 1, 7}] (* Vaclav Kotesovec, Sep 01 2019 *)
excess(n) = bigomega(n) - omega(n); score(n) = my(t=excess(n)); for(k=1, oo, if(excess(n+k) != t, return(k))); upto(nn) = my(n=1); for(k=1, nn, while(score(k) >= n, print1(k, ", "); n++)); \\ Daniel Suteu, Sep 01 2019
Do[k = 1; While[Length /@ FactorInteger /@ Range[k, k+n-1] != Table[n, {n}], k++ ]; Print[k], {n, 0, 5}] (* Ryan Propper, Oct 01 2005 *)
a(5) = 91 since the number of bi-unitary divisors of 91, 92, 93, 94 and 95 is 4, and this is the first run of 5 consecutive numbers.
bdivnum[1] = 1; bdivnum[n_] := Times @@ ((# + Mod[#, 2]) & /@ Last /@ FactorInteger[n]); Seq[n_, q_] := Map[bdivnum, Range[n, n + q - 1]]; findConsec[q_, nmin_, nmax_] := Module[{}, s = Seq[1, q]; n = q + 1; found = False; Do[If[CountDistinct[s] == 1, found = True; Break[]]; s = Rest[AppendTo[s, bdivnum[n]]]; n++, {k, nmin, nmax}]; If[found, n - q, 0]]; seq = {1}; nmax = 100000000; Do[n1 = Last[seq]; s1 = findConsec[m, n1, nmax]; If[s1 == 0, Break[]]; AppendTo[seq, s1], {m, 2, 13}];
844 has 2 square divisors {1, 4}, 845 has 2 square divisors {1, 169}, 846 has 2 square divisors {1, 9} and 847 has 2 square divisors {1, 121}. These are the first 4 consecutive numbers with the same number of square divisors, so a(4) = 844.
Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[Length[Select[Divisors[j], IntegerQ[Sqrt[#]] &]], {j, k, k + n - 1}]]] == 1, find = 1; Print[k]]], {n, 1, 7}]
isok(n, k) = #Set(apply(x->sumdiv(x, d, issquare(d)), vector(n, i, k+i-1))) == 1; a(n) = my(k=1); while(! isok(n, k), k++); k; \\ Michel Marcus, Nov 05 2020
Comments