cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A036428 Square octagonal numbers.

Original entry on oeis.org

1, 225, 43681, 8473921, 1643897025, 318907548961, 61866420601441, 12001766689130625, 2328280871270739841, 451674487259834398561, 87622522247536602581025, 16998317641534841066320321, 3297585999935511630263561281, 639714685669847721430064568225
Offset: 1

Views

Author

Jean-Francois Chariot (jean-francois.chariot(AT)afoc.alcatel.fr)

Keywords

Comments

Also, numbers simultaneously octagonal and centered octagonal. - Steven Schlicker, Apr 24 2007

Crossrefs

Programs

  • Magma
    [Floor(1/12*(2+Sqrt(3))^(4*n-2)): n in [1..20]]; // Vincenzo Librandi, Dec 04 2015
  • Maple
    A036428 := proc(n)
            option remember;
            if n < 4 then
                    op(n,[1,225,43681]) ;
            else
                    195*(procname(n-1)-procname(n-2))+procname(n-3) ;
            end if;
    end proc: # R. J. Mathar, Nov 11 2011
  • Mathematica
    LinearRecurrence[{195,-195,1}, {1,225,43681}, 12] (* Ant King, Nov 15 2011 *)
  • PARI
    Vec(-x*(x^2+30*x+1)/((x-1)*(x^2-194*x+1)) + O(x^20)) \\ Colin Barker, Jun 24 2015
    
  • PARI
    vector(15, n, floor((2+sqrt(3))^(4*n-2)/12)) \\ Altug Alkan, Oct 19 2015
    

Formula

Let x(n) + y(n)*sqrt(48) = (8+sqrt(48))*(7+sqrt(48))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+8*(s(n)^2-s(n))). - Steven Schlicker, Apr 24 2007
a(n+2) = 194*a(n+1) - a(n) + 32 and also a(n+1) = 97*a(n) + 56*sqrt(3*a(n)^2 + a(n)). - Richard Choulet, Sep 26 2007
G.f.: x*(x^2+30x+1)/((1-x)*(1-194x+x^2)).
From Ant King, Nov 15 2011: (Start)
lim_{n->oo} a(n)/a(n-1) = (2 + sqrt(3))^4 = 97 + 56*sqrt(3).
a(n) = (1/12) * ((2 + sqrt(3))^(4n-2) + (2 - sqrt(3))^(4n-2) - 2).
a(n) = floor((1/12) * (2 + sqrt(3))^(4n-2)).
a(n) = (1/12) * ((tan(5*Pi/12))^(4n-2) + (tan(Pi/12))^(4n-2) - 2).
a(n) = floor((1/12) * tan(5*Pi/12)^(4n-2)).
(End)
a(n) = A028230(n)^2. - Bernard Schott, Dec 23 2022

Extensions

More terms from Eric W. Weisstein
Edited by N. J. A. Sloane, Oct 02 2007
Showing 1-1 of 1 results.