cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006101 Gaussian binomial coefficient [ n,3 ] for q=3.

Original entry on oeis.org

1, 40, 1210, 33880, 925771, 25095280, 678468820, 18326727760, 494894285941, 13362799477720, 360801469802830, 9741692640081640, 263026177881648511, 7101711092201899360, 191746238094034963240, 5177148775980218655520, 139783020078437440101481
Offset: 3

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=3; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2016
  • Mathematica
    Table[QBinomial[n, 3, 3], {n, 3, 20}] (* Vincenzo Librandi, Nov 06 2016 *)
  • Sage
    [gaussian_binomial(n,3,3) for n in range(3,17)] # Zerinvary Lajos, May 25 2009
    

Formula

G.f.: z^3/((1-z)(1-3z)(1-9z)(1-27z)). Simon Plouffe in his 1992 dissertation
a(n) = (27^n - 13*9^n + 39*3^n - 27)/11232. - Mitch Harris, Mar 23 2008