A006241 Number of minimal plane trees with n terminal nodes.
1, 1, 1, 2, 1, 3, 1, 6, 2, 3, 1, 20, 1, 3, 3, 54, 1, 34, 1, 44, 3, 3, 1, 764, 2, 3, 10, 140, 1, 283, 1, 4470, 3, 3, 3, 10416, 1, 3, 3, 10820, 1, 2227, 1, 2060, 62, 3, 1, 958476, 2, 250, 3, 8204, 1, 59154, 3, 316004, 3, 3, 1, 3457904, 1, 3, 158, 30229110, 3
Offset: 1
Keywords
Examples
The a(12)=20 same-trees with all leaves greater than 1 are: 12, (3333), (222222), ((33)(33)), ((33)(222)), ((33)6), ((222)(33)), ((222)(222)), ((222)6), (6(33)), (6(222)), (66), ((22)(22)(22)), ((22)(22)4), ((22)4(22)), ((22)44), (4(22)(22)), (4(22)4), (44(22)), (444). - _Gus Wiseman_, Jan 15 2017
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- J. S. Lew, Polynomial enumeration of multidimensional lattices, Math. Systems Theory, 12 (1978), 253-270.
- Gus Wiseman, Same trees with all leaves equal to one n=1..15
- Index entries for sequences related to trees
Programs
-
Maple
a:= proc(n) option remember; `if`(n=1, 1, add( a(n/d)^d, d=numtheory[divisors](n) minus {1})) end: seq(a(n), n=1..70); # Alois P. Heinz, Feb 21 2017
-
Mathematica
Array[If[#1===1,1,Sum[#0[#1/d]^d,{d,Rest[Divisors[#1]]}]]&,200] (* Gus Wiseman, Jan 15 2017 *)
Formula
a(1)=a(2)=a(3)=a(5)=a(7)=1, a(4)=2, a(6)=3, a(n) = Sum_{1 != d | n} a(n / d)^d [From Lew]. - Sean A. Irvine, Feb 07 2017 [typo corrected by Ilya Gutkovskiy, Apr 24 2019]
Extensions
a(8), a(27), and a(50) corrected by Sean A. Irvine, Feb 07 2017
Comments