cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A281145 Number of same-trees of weight n.

Original entry on oeis.org

1, 2, 2, 6, 2, 14, 2, 54, 10, 38, 2, 494, 2, 134, 42, 4470, 2, 3422, 2, 10262, 138, 2054, 2, 490926, 34, 8198, 1514, 314294, 2, 628318, 2, 30229110, 2058, 131078, 162, 150147342, 2, 524294, 8202, 628073814, 2, 109952254, 2, 371210294, 207370, 8388614, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2017

Keywords

Comments

A same-tree is either: (case 1) a positive integer, or (case 2) a finite sequence of two or more same-trees all having the same weight, where the weight in case 2 is the sum of weights.

Examples

			The a(6)=14 same-trees are:
6,
(33),
(222),
(3(111)), ((111)3),
(22(11)), (2(11)2), ((11)22),
(2(11)(11)), ((11)2(11)), ((11)(11)2),
((111)(111)), ((11)(11)(11)), (111111).
The a(9)=10 same-trees are:
9,
(333),
(33(111)), (3(111)3), ((111)33),
(3(111)(111)), ((111)3(111)), ((111)(111)3),
((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+DivisorSum[n,b[#]^(n/#)&]-b[n]/.b->a;
    Array[a,47]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sumdiv(n, d, v[n/d]^d)); v} \\ Andrew Howroyd, Aug 20 2018

Formula

a(n) = 1 + Sum a(d)^(n/d) where the sum is over divisors less than n.

A297791 Number of series-reduced leaf-balanced rooted trees with n nodes. Number of orderless same-trees with n nodes and all leaves equal to 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 3, 3, 4, 3, 5, 3, 6, 4, 6, 3, 12, 3, 10, 7, 9, 6, 12, 9, 13, 16, 14, 22, 22, 24, 21, 24, 28, 14, 32, 15, 42, 20, 60, 27, 84, 44, 100, 59, 113, 74, 116, 85, 110, 97, 96, 113, 106, 149, 147, 234, 235, 377, 380, 580, 576, 838
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2018

Keywords

Comments

An unlabeled rooted tree is leaf-balanced if all branches from the same root have the same number of leaves. It is series-reduced if all positive out-degrees are greater than one.

Examples

			The a(13) = 5 trees: (((oo)(oo))(oooo)), ((ooooo)(ooooo)), ((ooo)(ooo)(ooo)), ((oo)(oo)(oo)(oo)), (oooooooooooo).
		

Crossrefs

Programs

  • Mathematica
    alltim[n_]:=alltim[n]=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[alltim/@c]],And[SameQ@@(Count[#,{},{0,Infinity}]&/@#),FreeQ[#,{_}]]&]]/@IntegerPartitions[n-1]];
    Table[Length[alltim[n]],{n,20}]
  • PARI
    lista(nn) = my(k, r, t, u, w=vector(nn, i, vector(i))); w[1][1]=1; for(s=2, nn, fordiv(s, d, if(dw[i][d], [d..nn]); forvec(v=vector(s/d, i, [1, #u]), if(nn>=r=1+sum(i=1, #v, u[v[i]]), k=1; t=1; for(i=2, #v, if(v[i]==v[i-1], k++, t*=binomial(w[u[v[i-1]]][d]+k-1, k); k=1)); w[r][s]+=t*binomial(w[u[v[#v]]][d]+k-1, k)), 1)))); vector(nn, i, vecsum(w[i])); \\ Jinyuan Wang, Feb 25 2025

Extensions

a(51) onward from Robert G. Wilson v, Jan 07 2018

A300647 Number of same-trees of weight n in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 10, 2, 2, 2, 2, 2, 42, 1, 2, 10, 2, 2, 138, 2, 2, 2, 34, 2, 1514, 2, 2, 42, 2, 1, 2058, 2, 162, 10, 2, 2, 8202, 2, 2, 138, 2, 2, 207370, 2, 2, 2, 130, 34, 131082, 2, 2, 1514, 2082, 2, 524298, 2, 2, 42, 2, 2, 14725738, 1, 8226, 2058, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all equal and sum to n.

Examples

			The a(9) = 10 odd same-trees:
9,
(333),
(33(111)), (3(111)3), ((111)33)
(3(111)(111)), ((111)3(111)), ((111)(111)3),
((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[n/d]^d,{d,Select[Rest[Divisors[n]],OddQ]}];
    Array[a,80]
  • PARI
    a(n) = if (n==1, 1, 1+sumdiv(n, d, if ((d > 1) && (d % 2), a(n/d)^d))); \\ Michel Marcus, Mar 10 2018

Formula

a(n) = 1 + Sum_d a(n/d)^d where the sum is over odd divisors of n greater than 1.

A300648 Number of orderless same-trees of weight n in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 12, 1, 2, 6, 2, 2, 14, 2, 2, 2, 8, 2, 68, 2, 2, 12, 2, 1, 18, 2, 16, 6, 2, 2, 20, 2, 2, 14, 2, 2, 644, 2, 2, 2, 10, 8, 24, 2, 2, 68, 20, 2, 26, 2, 2, 12, 2, 2, 1386, 1, 22, 18, 2, 2, 30, 16, 2, 6, 2, 2, 4532, 2, 22, 20
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

An orderless same-tree of weight n > 0 is either a single node of weight n, or a finite multiset of two or more orderless same-trees whose weights are all equal and sum to n.

Examples

			The a(9) = 6 odd orderless same-trees: 9, (333), (33(111)), (3(111)(111)), ((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[Binomial[a[n/d]+d-1,d],{d,Select[Rest[Divisors[n]],OddQ]}];
    Array[a,80]
  • PARI
    a(n) = if (n==1, 1, 1 + sumdiv(n, d, if ((d > 1) && (d % 2), binomial(a(n/d) + d - 1, d)))); \\ Michel Marcus, Mar 10 2018

Formula

a(n) = 1 + Sum_d binomial(a(n/d) + d - 1, d) where the sum is over odd divisors of n greater than 1.

A294019 Number of same-trees whose leaves are the parts of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 3, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 8
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2018

Keywords

Comments

By convention a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(108) = 8 same-trees: ((22)(2(11))), ((22)((11)2)), ((2(11))(22)), (((11)2)(22)), (222(11)), (22(11)2), (2(11)22), ((11)222).
From _Antti Karttunen_, Sep 22 2018: (Start)
For 12 = prime(1)^2 * prime(2)^1, we have the following two cases: 2(11) and (11)2, thus a(12) = 2.
For 36 = prime(1)^2 * prime(2)^2, we have the following cases: (11)22, 2(11)2, 22(11), thus a(36) = 3.
For 144  = prime(1)^4 * prime(2)^2, we have the following 14 cases: (1111)(22), (22)(1111); ((11)(11))(22), (22)((11)(11)); (11)(11)22, (11)2(11)2, (11)22(11), 2(11)2(11), 2(11)(11)2, 22(11)(11); ((11)2)(11(2)), ((11)2)(2(11)), (2(11))((11)2), (2(11))(2(11)), thus a(144) = 14.
For n = 8775 = 3^3 * 5^2 * 13^1 = prime(2)^3 * prime(3)^2 * prime(6)^1, we have the following six cases: (222)(33)6, (222)6(33), (33)(222)6, (33)6(222), 6(222)(33), 6(33)(222), thus a(8775) = 6.
(End)
		

Crossrefs

Programs

  • Mathematica
    nn=120;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    qci[y_]:=qci[y]=If[Length[y]===1,1,Sum[Times@@qci/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,SameQ@@Total/@#]&]}]];
    qci/@ptns
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    productifbalancedfactorization(v) = if(!#v, 1, my(pw=A056239(v[1]), m=1); for(i=1,#v,if(A056239(v[i])!=pw,return(0), m *= A294019(v[i]))); (m));
    A294019aux(n, m, facs) = if(1==n, productifbalancedfactorization(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A294019aux(n/d, m, newfacs))); (s));
    A294019(n) = if(1==n,0,if(isprime(n),1,A294019aux(n, n-1, List([]))));
    \\ A memoized implementation:
    map294019 = Map();
    A294019(n) = if(1==n,0,if(isprime(n),1,if(mapisdefined(map294019,n), mapget(map294019,n), my(v=A294019aux(n, n-1, List([]))); mapput(map294019,n,v); (v)))); \\ Antti Karttunen, Sep 22 2018

Formula

A281145(n) = Sum_{i=1..A000041(n)} a(A215366(n,i)).
a(p^n) = A006241(n) for any prime p and exponent n >= 1. - Antti Karttunen, Sep 22 2018

A300649 Number of same-trees of weight 2n + 1 in which all outdegrees are odd and all leaves greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 10, 1, 1, 3, 3, 1, 3, 1, 1, 62, 1, 2, 3, 1, 3, 3, 1, 1, 158, 3, 1, 3, 1, 1, 254, 3, 1, 1514, 1, 3, 3, 1, 3, 3, 3, 1, 2078, 1, 1, 2461, 1, 1, 3, 1, 3, 8222, 3, 2, 3, 34, 1, 3, 1, 3, 390782, 1, 1, 3, 3, 3, 2198, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all equal and sum to n.

Examples

			The a(13) = 10 odd same-trees with all leaves greater than 1:
27,
(999),
(99(333)), (9(333)9), ((333)99),
(9(333)(333)), ((333)9(333)), ((333)(333)9),
((333)(333)(333)), (333333333).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n===1,1,Sum[a[n/d]^d,{d,Select[Rest[Divisors[n]],OddQ]}]];
    Table[a[n],{n,1,100,2}]
  • PARI
    f(n) = if (n==1, 1, sumdiv(n, d, if ((d > 1) && (d % 2), f(n/d)^d)));
    a(n) = f(2*n+1); \\ Michel Marcus, Mar 10 2018

Formula

a(1) = 1; a(n > 1) = Sum_d a(n/d)^d where the sum is over odd divisors of n greater than 1.

A300650 Number of orderless same-trees of weight 2n + 1 in which all outdegrees are odd and all leaves greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 6, 1, 1, 3, 3, 1, 3, 1, 1, 19, 1, 2, 3, 1, 3, 3, 1, 1, 21, 3, 1, 3, 1, 1, 28, 3, 1, 68, 1, 3, 3, 1, 3, 3, 3, 1, 25, 1, 1, 71, 1, 1, 3, 1, 3, 27, 3, 2, 3, 8, 1, 3, 1, 3, 1656, 1, 1, 3, 3, 3, 43, 1, 1, 31, 3, 1, 3, 3, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

An orderless same-tree of weight n > 0 is either a single node of weight n, or a finite multiset of two or more orderless same-trees whose weights are all equal and sum to n.

Examples

			The a(13) = 6 orderless same-trees: 27, (999), (99(333)), (9(333)(333)), ((333)(333)(333)), (333333333).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n===1,1,Sum[Binomial[a[n/d]+d-1,d],{d,Select[Rest[Divisors[n]],OddQ]}]];
    Table[a[n],{n,1,100,2}]
  • PARI
    f(n) = if (n==1, 1, sumdiv(n, d, if ((d > 1) && (d % 2), binomial(f(n/d)+d-1, d))));
    a(n) = f(2*n+1); \\ Michel Marcus, Mar 10 2018

Formula

a(1) = 1; a(n > 1) = Sum_d binomial(a(n/d) + d - 1, d) where the sum is over odd divisors of n greater than 1.

A301367 Regular triangle where T(n,k) is the number of orderless same-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 3, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 4, 4, 3, 5, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 0, 1, 2, 1, 1, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 4, 5, 10, 11, 14, 12, 14, 7, 13, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

An orderless same-tree of weight n > 0 is either a single node of weight n, or a finite multiset of two or more orderless same-trees whose weights are all the same and sum to n.

Examples

			Triangle begins:
1
1   1
1   0   1
1   1   1   2
1   0   0   0   1
1   1   1   2   1   3
1   0   0   0   0   0   1
1   1   1   3   4   4   3   5
1   0   1   0   1   0   1   0   2
1   1   0   0   1   2   1   1   1   3
1   0   0   0   0   0   0   0   0   0   1
1   1   2   4   5  10  11  14  12  14   7  13
1   0   0   0   0   0   0   0   0   0   0   0   1
1   1   0   0   0   0   1   2   1   1   1   1   1   3
The T(8,5) = 4 orderless same-trees: (4((11)(11))), (4(1111)), ((22)(2(11))), (222(11)).
		

Crossrefs

Programs

  • Mathematica
    olstrees[n_]:=Prepend[Join@@Table[Select[Tuples[olstrees/@ptn],OrderedQ],{ptn,Select[IntegerPartitions[n],Length[#]>1&&SameQ@@#&]}],n];
    Table[Length[Select[olstrees[n],Count[#,_Integer,{-1}]===k&]],{n,14},{k,n}]
  • PARI
    S(g, k)={polcoef(exp(sum(i=1, k, x^i*subst(g, y, y^i)/i) + O(x*x^k)), k)}
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + sumdiv(n, d, S(v[n/d], d))); apply(p -> Vecrev(p/y), v)}
    { my(v=A(16)); for(n=1, #v, print(v[n])) } \\ Andrew Howroyd, Aug 20 2018

A301366 Regular triangle where T(n,k) is the number of same-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 5, 3, 3, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 6, 12, 14, 12, 6, 1, 0, 1, 0, 3, 0, 3, 0, 2, 1, 1, 0, 0, 1, 7, 10, 10, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 7, 21, 41, 58, 100, 100, 94, 48, 20
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all the same and sum to n.

Examples

			Triangle begins:
1
1   1
1   0   1
1   1   2   2
1   0   0   0   1
1   1   1   5   3   3
1   0   0   0   0   0   1
1   1   2   6  12  14  12   6
1   0   1   0   3   0   3   0   2
1   1   0   0   1   7  10  10   5   3
1   0   0   0   0   0   0   0   0   0   1
1   1   3   7  21  41  58 100 100  94  48  20
The T(8,4) = 6 same-trees: (4(2(11))), (4((11)2)), ((22)(22)), ((2(11))4), (((11)2)4), (2222).
		

Crossrefs

Programs

  • Mathematica
    sametrees[n_]:=Prepend[Join@@Table[Tuples[sametrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]>1&&SameQ@@#&]}],n];
    Table[Length[Select[sametrees[n],Count[#,_Integer,{-1}]===k&]],{n,12},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = x + sumdiv(n, d, v[n/d]^d)); apply(p -> Vecrev(p/x), v)}
    {my(v=A(16)); for(n=1, #v, print(v[n]))} \\ Andrew Howroyd, Aug 20 2018

A348661 a(1) = 1; a(n) = Sum_{d|n, d < n} d * a(d)^(n/d).

Original entry on oeis.org

1, 1, 1, 3, 1, 6, 1, 39, 4, 8, 1, 330, 1, 10, 9, 12495, 1, 1446, 1, 1620, 11, 14, 1, 1792050, 6, 16, 580, 10158, 1, 53002, 1, 2516534175, 15, 20, 13, 469241466, 1, 22, 17, 774558756, 1, 1696170, 1, 712914, 20160, 26, 1, 108457624531554, 8, 328588, 21, 6383964
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2021

Keywords

Crossrefs

Cf. A006241, A008578 (positions of 1's), A157313, A165552, A196545, A281145.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[If[d < n, d a[d]^(n/d), 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 52}]

Formula

For n > 1, a(n) is the coefficient of x^n/n in expansion of -log(Product_{k=1..n-1} (1 - a(k)*x^k)).
Showing 1-10 of 10 results.