cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006267 Continued cotangent for the golden ratio.

Original entry on oeis.org

1, 4, 76, 439204, 84722519070079276, 608130213374088941214747405817720942127490792974404
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 4 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 15 2022
  • Mathematica
    c = N[GoldenRatio, 1000]; Table[Round[c^(3^n)], {n, 1, 8}] (* Artur Jasinski, Sep 22 2008 *)
    a = {}; x = 4; Do[AppendTo[a, x]; x = x^3 + 3 x, {n, 1, 10}]; a (* Artur Jasinski, Sep 24 2008 *)
  • PARI
    a(n)=fibonacci(3^n+1) + fibonacci(3^n-1) \\ Andrew Howroyd, Dec 30 2024
    
  • PARI
    a(n)={my(t=1); for(i=1, n, t = t^3 + 3*t); t} \\ Andrew Howroyd, Dec 30 2024

Formula

(1+sqrt(5))/2 = cot(Sum_{n>=0} (-1)^n*acot(a(n))); let b(0) = (1+sqrt(5))/2, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)). - Benoit Cloitre, Apr 10 2003
a(n) = A000204(3^n). - Benoit Cloitre, Sep 18 2005
a(n) = round(c^(3^n)) where c = GoldenRatio = 1.6180339887498948482... = (sqrt(5)+1)/2 (A001622). - Artur Jasinski, Sep 22 2008
a(n) = a(n-1)^3 + 3*a(n-1), a(0) = 1. - Artur Jasinski, Sep 24 2008
a(n+1) = Product_{k = 0..n} A002813(k). Thus a(n) divides a(n+1). - Peter Bala, Nov 22 2012
Sum_{n>=0} a(n)^2/A045529(n+1) = 1. - Amiram Eldar, Jan 12 2022
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) + 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 15 2022: (Start)
a(n) = Lucas(3^n) for n >= 1.
a(n) == 1 (mod 3) for n >= 1.
a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the Lucas numbers).
The smallest positive residue of a(n) mod 3^n = A268924(n).
In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271223. Cf. A006266. (End)

Extensions

The next term is too large to include.