cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006324 a(n) = n*(n + 1)*(2*n^2 + 2*n - 1)/6.

Original entry on oeis.org

1, 11, 46, 130, 295, 581, 1036, 1716, 2685, 4015, 5786, 8086, 11011, 14665, 19160, 24616, 31161, 38931, 48070, 58730, 71071, 85261, 101476, 119900, 140725, 164151, 190386, 219646, 252155, 288145, 327856, 371536, 419441, 471835, 528990, 591186
Offset: 1

Views

Author

Albert Rich (Albert_Rich(AT)msn.com), Jun 14 1998

Keywords

Comments

4-dimensional analog of centered polygonal numbers.
Partial sums of A000447. - Zak Seidov, May 19 2006
From Johannes W. Meijer, Jun 27 2009: (Start)
Equals the absolute values of the coefficients that precede the a(n-1) factors of the recurrence relations RR(n) of A162011.
This sequence enabled the analysis of A162012 and A162013. (End)
Equals the number of integer quadruples (x,y,z,w) such that min(x,y) < min(z,w), max(x,y) < max(z,w), and 0 <= x,y,z,w <= n. - Andrew Woods, Apr 21 2014
For n>3 a(n)=twice the area of an irregular quadrilateral with vertices at the points (C(n,4),C(n+1,4)), (C(n+1,4),C(n+2,4)), (C(n+2,4),C(n+3,4)), and (C(n+3,4),C(n+4,4)). - J. M. Bergot, Jun 14 2014

Crossrefs

Cf. A162011, A162012, a(n-2), and A162013, a(n-3). - Johannes W. Meijer, Jun 27 2009

Programs

Formula

a(n) = 8*C(n + 2, 4) + C(n + 1, 2).
a(n) = (Sum_{k=1..n} k^5) / (Sum_{k=1..n} k) = A000539(n) / A000217(n). - Alexander Adamchuk, Apr 12 2006
From Johannes W. Meijer, Jun 27 2009: (Start)
Recurrence relation 0 = Sum_{k=0..5} (-1)^k*binomial(5,k)*a(n-k).
G.f.: (1+6*z+z^2)/(1-z)^5. (End)
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, May 02 2021
Sum_{n>=1} 1/a(n) = 6 + 2*sqrt(3)*Pi*tan(sqrt(3)*Pi/2). - Amiram Eldar, Aug 23 2022
a(n) = A053134(n-1) - 4*A002415(n). - Yasser Arath Chavez Reyes, Feb 12 2024

Extensions

Simpler definition from Alexander Adamchuk, Apr 12 2006
More terms from Zak Seidov