A006324 a(n) = n*(n + 1)*(2*n^2 + 2*n - 1)/6.
1, 11, 46, 130, 295, 581, 1036, 1716, 2685, 4015, 5786, 8086, 11011, 14665, 19160, 24616, 31161, 38931, 48070, 58730, 71071, 85261, 101476, 119900, 140725, 164151, 190386, 219646, 252155, 288145, 327856, 371536, 419441, 471835, 528990, 591186
Offset: 1
Links
- Delbert L. Johnson, Table of n, a(n) for n = 1..20000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[ n*(n + 1)*(2*n^2 + 2*n - 1)/6 : n in [1..30] ]; // Wesley Ivan Hurt, Jun 14 2014
-
Maple
A006324:=n->n*(n + 1)*(2*n^2 + 2*n - 1)/6; seq(A006324(n), n=1..30); # Wesley Ivan Hurt, Jun 14 2014
-
Mathematica
Table[Sum[k^5,{k,n}]/Sum[k,{k,n}], {n,40}] (* Alexander Adamchuk, Apr 12 2006 *)
Formula
a(n) = 8*C(n + 2, 4) + C(n + 1, 2).
a(n) = (Sum_{k=1..n} k^5) / (Sum_{k=1..n} k) = A000539(n) / A000217(n). - Alexander Adamchuk, Apr 12 2006
From Johannes W. Meijer, Jun 27 2009: (Start)
Recurrence relation 0 = Sum_{k=0..5} (-1)^k*binomial(5,k)*a(n-k).
G.f.: (1+6*z+z^2)/(1-z)^5. (End)
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, May 02 2021
Sum_{n>=1} 1/a(n) = 6 + 2*sqrt(3)*Pi*tan(sqrt(3)*Pi/2). - Amiram Eldar, Aug 23 2022
Extensions
Simpler definition from Alexander Adamchuk, Apr 12 2006
More terms from Zak Seidov
Comments