A006380 Number of equivalence classes of 4 X n binary matrices when one can permute rows, permute columns and complement columns.
1, 3, 8, 19, 41, 81, 153, 273, 468, 774, 1240, 1930, 2933, 4356, 6341, 9064, 12743, 17643, 24093, 32479, 43270, 57019, 74377, 96103, 123089, 156354, 197081, 246622, 306519, 378520, 464614, 567028, 688276, 831169, 998845, 1194793, 1422899, 1687447, 1993182
Offset: 0
References
- M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
- Index entries for sequences related to binary matrices
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2,-2,2,5,-8,6,-8,5,2,-2,2,-5,4,-1).
- Index entries for two-way infinite sequences
Programs
-
Mathematica
LinearRecurrence[{4,-5,2,-2,2,5,-8,6,-8,5,2,-2,2,-5,4,-1},{1,3,8,19,41,81,153,273,468,774,1240,1930,2933,4356,6341,9064},40] (* Harvey P. Dale, Nov 23 2024 *)
-
PARI
Vec((1 - x + x^2 + x^4 + x^6 - x^7 + x^8)/((1 - x)^8*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2) + O(x^41)) \\ Andrew Howroyd, May 30 2023
Formula
G.f.: (1 - x + x^2 + x^4 + x^6 - x^7 + x^8)/((1 - x)^8*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2). - Andrew Howroyd, May 30 2023
Extensions
Terms a(7) onwards from Max Alekseyev, Feb 05 2010