A006463 Convolve natural numbers with characteristic function of triangular numbers.
0, 0, 1, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 40, 45, 50, 55, 60, 65, 70, 76, 82, 88, 94, 100, 106, 112, 119, 126, 133, 140, 147, 154, 161, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 340, 350, 360
Offset: 0
Examples
a(6)=8; one longest chain consists of these 9 partitions: 6, 5+1, 4+2, 3+3, 3+2+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1. Others are obtained by changing 3+3 to 4+1+1 or 2+2+2 to 3+1+1+1. G.f. = x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 11*x^7 + 14*x^8 + 17*x^9 + ...
References
- N. A. Rosenberg, Mathematical Properties of Population-Genetic Statistics, Princeton University Press, 2025; page 113.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.2(f).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Curtis Greene and Daniel J. Kleitman, Longest chains in the lattice of integer partitions ordered by majorization, Europ. J. Combinator. 7 (1986), 1-10.
- Jeffrey Shallit, Letter to N. J. A. Sloane with attachment, Aug. 1979
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Haskell
a006463 n = a006463_list !! n a006463_list = 0 : scanl1 (+) a003056_list -- Reinhard Zumkeller, Dec 17 2011
-
Mathematica
a[n_] := (x = Quotient[ Sqrt[1+8*n]-1, 2]; x*(x^2-1+3*(n-x*(x+1)/2))/3); Table[a[n], {n, 0, 58}] (* Jean-François Alcover, Apr 11 2013, after Michael Somos *) t = {0}; Do[Do[AppendTo[t, t[[-1]]+n], {k, 0, n}], {n, 0, 11}]; t (* Jean-François Alcover, May 10 2016, after Vladimir Joseph Stephan Orlovsky *) Join[{0},Table[ListConvolve[Range[x],Table[If[OddQ[Sqrt[8n+1]],1,0],{n,x}]],{x,0,60}]//Flatten] (* Harvey P. Dale, Jan 14 2019 *)
-
PARI
{a(n) = my(x); if( n<0, 0, x = (sqrtint(8*n + 1) - 1)\2; x * (x^2 - 1 + 3 * (n - x*(x+1)/2)) / 3)}; /* Michael Somos, Mar 06 2006 */
-
Python
from math import isqrt def A006463(n): return (m:=isqrt((n<<3)+1)-1>>1)*(6*n-2-m*(m+3))//6 # Chai Wah Wu, Jun 07 2025
Formula
Let n=binomial(m+1, 2)+r, 0<=r<=m; then a(n) = (1/3)*m*(m^2+3*r-1).
G.f.: (psi(x) - 1) * x / (1 - x)^2 where psi() is a Ramanujan theta function. - Michael Somos, Mar 06 2006
a(n) = Sum_(k=0..n-1) A003056(k). - Daniele Parisse, Jul 10 2007
a(n+1) - 2*a(n) + a(n-1) = A010054(n) if n>0. - Michael Somos, May 07 2016
Extensions
Edited by Dean Hickerson, Nov 09 2002
Comments