cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006466 Continued fraction expansion of C = 2*Sum_{n>=0} 1/2^(2^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

C arises when looking for a sequence b(n) such that b(1)=0 and b(n+1) is the smallest integer > b(n) such that the continued fraction for 1/2^b(1) + 1/2^b(2) + ... + 1/2^b(n+1) contains only 1's or 2's. It arises because b(n) = 2^n - 1 and C = Sum_{k>=0} 1/2^b(k). - Benoit Cloitre, Nov 03 2002

Examples

			1.632843018043786287416159475... = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 09 2009
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A076214 = Decimal expansion. - Harry J. Smith, May 09 2009

Programs

  • PARI
    { allocatemem(932245000); default(realprecision, 10000); x=suminf(n=0, 1/2^(2^n)); x=contfrac(2*x); for (n=1, 20001, write("b006466.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 09 2009

Formula

Recurrence: a(5n) = a(5n+1) = a(2) = a(5n+3) = a(20n+14) = a(40n+9) = 1, a(20n+4) = a(40n+29) = 2, a(5n+2) = 3 - a(5n-1), a(20n+19) = a(10n+9). - Ralf Stephan, May 17 2005

Extensions

Better description and more terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 19 2001