A006466 Continued fraction expansion of C = 2*Sum_{n>=0} 1/2^(2^n).
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2
Offset: 0
Examples
1.632843018043786287416159475... = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 09 2009
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Boris Adamczewski, The Many Faces of the Kempner Number, Journal of Integer Sequences, Vol. 16 (2013), #13.2.15.
- J. Shallit, Letter to N. J. A. Sloane with attachment, Aug. 1979
- Jeffrey Shallit, Simple continued fractions for some irrational numbers. J. Number Theory 11 (1979), no. 2, 209-217 [DOI]
Crossrefs
Cf. A076214 = Decimal expansion. - Harry J. Smith, May 09 2009
Programs
-
PARI
{ allocatemem(932245000); default(realprecision, 10000); x=suminf(n=0, 1/2^(2^n)); x=contfrac(2*x); for (n=1, 20001, write("b006466.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 09 2009
Formula
Recurrence: a(5n) = a(5n+1) = a(2) = a(5n+3) = a(20n+14) = a(40n+9) = 1, a(20n+4) = a(40n+29) = 2, a(5n+2) = 3 - a(5n-1), a(20n+19) = a(10n+9). - Ralf Stephan, May 17 2005
Extensions
Better description and more terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 19 2001
Comments