cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A076214 Decimal expansion of C = Sum_{k>=0} 1/2^(2^k-1).

Original entry on oeis.org

1, 6, 3, 2, 8, 4, 3, 0, 1, 8, 0, 4, 3, 7, 8, 6, 2, 8, 7, 4, 1, 6, 1, 5, 9, 4, 7, 5, 0, 6, 1, 0, 5, 0, 4, 4, 3, 4, 0, 6, 6, 2, 2, 7, 5, 1, 8, 4, 1, 1, 0, 5, 6, 0, 8, 6, 8, 2, 4, 2, 1, 8, 0, 7, 6, 8, 6, 1, 1, 1, 2, 2, 8, 3, 8, 9, 1, 1, 0, 6, 0, 0, 1, 2, 0, 9, 7, 0, 6, 2, 6, 4, 9, 6, 7, 9, 4, 5, 3, 1, 2, 3, 5, 1, 1
Offset: 1

Views

Author

Benoit Cloitre, Nov 03 2002

Keywords

Comments

This constant has a nice continued fraction expansion (i.e. only 1 and 2 occur). C arises when looking for a sequence b(n) such that : b(1) = 0, b(n+1) is the smallest integer > b(n) such that the continued fraction for 1/2^b(1) + 1/2^b(2) + ... + 1/2^b(n+1) contains only 1's or 2's. Because b(n) = 2^n-1 and C = Sum_{k>=0} 1/2^b(k).

Examples

			1.632843018043786287416159475061050443406622751841105608682421807686111...
		

Crossrefs

Cf. A006466 (continued fraction), A007404, A078585.

Programs

  • Mathematica
    Take[ RealDigits[ 2*NSum[1/2^2^k, {k, 0, Infinity}, WorkingPrecision -> 120]][[1]], 105] (* Jean-François Alcover, Nov 15 2011 *)
  • PARI
    default(realprecision, 20080); x=suminf(k=0, 1/2^(2^k)); x*=2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b076214.txt", n, " ", d)); \\ Harry J. Smith, May 09 2009

Formula

Equals 2 * Sum_{k>=0} 1/2^(2^k) = 2 * A007404. - Harry J. Smith, May 09 2009
From Amiram Eldar, Mar 12 2024: (Start)
Equals 1 + 2 * A078585.
Equals 1 + Sum_{k>=1} floor(log_2(k))/2^k (Shamos, 2011, p. 8). (End)

A076157 Continued fraction expansion for c=sum_{k>=0} 1/2^(k!).

Original entry on oeis.org

1, 3, 1, 3, 4, 4095, 1, 3, 3, 1, 3, 4722366482869645213695, 1, 2, 1, 3, 3, 1, 4095, 4, 3, 1, 3, 3121748550315992231381597229793166305748598142664971150859156959625371738819765620120306103063491971159826931121406622895447975679288285306290175
Offset: 1

Views

Author

Benoit Cloitre, Nov 02 2002

Keywords

Comments

Observation: if b(k) denotes the sequence of all elements of the continued fraction for c, b(k) = 4095 if k==6 or 19 (mod 24); b(k) = 4722366482869645213695 if k==12 or 37 (mod 48); .... If b(k) is not congruent to 5 (mod 10), it seems that b(k) = 1,2,3 or 4 only.
Conjecture: a(3*2^n) = -1 + 2^[(n+1)((n+2)!) ]. - Ralf Stephan, May 17 2005
The conjecture follows from the theorem in Shallit's paper. The continued fraction has a "folded" overall structure. - Georg Fischer, Aug 29 2022

Crossrefs

Programs

  • PARI
    {allocatemem(220000000);
    default(realprecision, 1000000);
    contfrac(suminf(k=0, 1/(2^(k!))))}

Formula

c=1.2656250596046447753906250000000000007... = A076187.

Extensions

More terms from Ralf Stephan, May 17 2005
b-file, a-file, PARI program, and corrected conjecture by Rick L. Shepherd, Jun 07 2013

A081771 Continued fraction for Sum_{k>=0} 1/3^(2^k-1).

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

Comments

Contains only elements 1 <= a(n) <= 3. See Judnick, example 12.

Crossrefs

A283526 Pierce expansion of the number Sum_{k >= 1} 1/(2^(2^k - 1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 16, 17, 256, 257, 65536, 65537, 4294967296, 4294967297, 18446744073709551616, 18446744073709551617, 340282366920938463463374607431768211456, 340282366920938463463374607431768211457
Offset: 0

Views

Author

Kutlwano Loeto, Mar 10 2017

Keywords

Comments

This sequence is the Pierce expansion of the number 2*s(2) - 1 = 0.632843018043786287416159475061... where s(u) = Sum_{k>=0} 1/u^(2^k) that has been considered by J. Shallit in A007400. The continued fraction expansion of this number is essentially A006466.

Examples

			The Pierce expansion of 0.6328430180437862 starts as 1 - 1/2 + 1/(2*3) - 1/(2*3*4) + 1/(2*3*4*5) - 1/(2*3*4*5*16) + ...
		

Crossrefs

Programs

  • Maple
    L:=[1]: for k from 0 to 6 do: L:=[op(L),2^(2^k),2^(2^k)+1]: od: print(L);
  • Mathematica
    {1}~Join~Map[{#, # + 1} &, 2^2^Range[0, 8]] // Flatten (* Michael De Vlieger, Mar 18 2017 *)

Formula

a(0) = 1, a(2k+1) = 2^(2^k), a(2k+2) = 2^(2^k) + 1.

A061678 Continued fraction for Sum_{n>=0} 1/3^(3^n).

Original entry on oeis.org

0, 2, 1, 2, 3, 26, 1, 2, 2, 1, 2, 19682, 1, 1, 1, 2, 2, 1, 26, 3, 2, 1, 2, 7625597484986, 1, 1, 1, 2, 3, 26, 1, 2, 2, 1, 1, 1, 19682, 2, 1, 2, 2, 1, 26, 3, 2, 1, 2, 443426488243037769948249630619149892802, 1, 1, 1, 2, 3, 26, 1, 2, 2, 1, 2, 19682
Offset: 0

Views

Author

Jason Earls, Jun 23 2001

Keywords

Comments

The continued fraction has a "folded" overall structure. Apart from a(0) and from the record values of the form 3^(3^k)-1 (k >= 0), the only terms are 1 and 3. This follows from the theorem in Shallit's paper. - Georg Fischer, Aug 29 2022

Examples

			0.370421175633926798495743189411...
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Sum[1/3^(3^i), {i, 0, 5}]] (* Michael De Vlieger, Jul 01 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 8000); x=contfrac(suminf(n=0, 1/3^(3^n))); for (n=0, 382, write("b061678.txt", n, " ", x[n+1])) } \\ Harry J. Smith, Jul 26 2009

A076216 Partial sum of coefficients in the continued fraction expansion of sum(k>=0,1/2^(2^k-1)).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86
Offset: 1

Views

Author

Benoit Cloitre, Nov 03 2002

Keywords

Formula

a(n)=sum(k=1, n, A006466(k)). lim n ->infinity a(n)/n = 6/5 and 0<=6*n-5*a(n)<=7

Extensions

Corrected by T. D. Noe, Nov 02 2006

A081769 a(n)-th term of the continued fraction for sum(k>=0,1/2^(2^k)) is 2.

Original entry on oeis.org

5, 13, 18, 23, 25, 30, 38, 43, 45, 53, 58, 60, 65, 70, 78, 83, 85, 93, 98, 103, 105, 110, 118, 120, 125, 133, 138, 140, 145, 150, 158, 163, 165, 173, 178, 183, 185, 190, 198, 203, 205, 213, 218, 220, 225, 230, 238, 240, 245, 253, 258, 263, 265, 270, 278, 280
Offset: 1

Views

Author

Benoit Cloitre, Apr 09 2003

Keywords

Examples

			The continued fraction for sum(k>=0,1/2^(2^k)) is : 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1... hence a(1)=5
		

Crossrefs

Formula

a(n)=5*n + 0 or + 3 and it appears that a(n)=5*n+3*A073089(n+2)
Showing 1-7 of 7 results.