A006468 Number of rooted planar maps with 4 faces and n vertices and no isthmuses.
5, 37, 150, 449, 1113, 2422, 4788, 8790, 15213, 25091, 39754, 60879, 90545, 131292, 186184, 258876, 353685, 475665, 630686, 825517, 1067913, 1366706, 1731900, 2174770, 2707965, 3345615, 4103442, 4998875, 6051169, 7281528, 8713232, 10371768, 12284965, 14483133, 16999206
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Simon Plouffe, Approximations of generating functions and a few conjectures, Master's thesis, UQAM, 1992; arXiv:0911.4975 [math.NT], 2009.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VIb, f=5.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Column k=4 of A342981.
Programs
-
Mathematica
A006468[n_] := n*(n + 1)*(n + 2)*(n*(n*(2*n + 33) + 142) + 123)/360; Array[A006468, 50] (* Paolo Xausa, Aug 20 2025 *)
-
PARI
a(n) = {n *(n+1) *(n+2) *(2*n^3 + 33*n^2 + 142*n + 123) /360} \\ Andrew Howroyd, Apr 02 2021
Formula
G.f.: -x*(x^3-4*x^2+2*x+5)/(x-1)^7, equivalent to a(n) = n *(n+1) *(n+2) *(2*n^3 +33*n^2 +142*n +123) /360, conjectured in Simon Plouffe's Master's thesis, 1992.
The above conjecture is true. - Andrew Howroyd, Apr 02 2021
Extensions
Title improved and a(13)-a(14) from Sean A. Irvine, Apr 24 2017
Terms a(15) and beyond from Andrew Howroyd, Apr 02 2021