A006491 Generalized Lucas numbers.
1, 0, 4, 5, 15, 28, 60, 117, 230, 440, 834, 1560, 2891, 5310, 9680, 17527, 31545, 56468, 100590, 178395, 315106, 554530, 972564, 1700400, 2964325, 5153868, 8938300, 15465497, 26700915, 46004620, 79112304, 135801105, 232715006, 398151740
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
Programs
-
Magma
I:=[1,0,4,5,15,28]; [n le 6 select I[n] else 3*Self(n-1) -5*Self(n-3) +3*Self(n-5)+Self(n-6): n in [1..30]]; // G. C. Greubel, Jan 01 2018
-
Maple
G:=x*(1-x)*(1-2*x+2*x^2)/(1-x-x^2)^3: Gser:=series(G,x=0,45): seq(coeff(Gser,x^n),n=1..40); # Emeric Deutsch, Feb 07 2006 with(combinat): a[1]:=1: a[2]:=0: for n from 3 to 40 do a[n]:=a[n-1]+a[n-2]+n*fibonacci(n-2)-(n-1)*fibonacci(n-3) od: seq(a[n],n=1..40); # Emeric Deutsch, May 20 2006 A006491:=(z-1)*(1-2*z+2*z**2)/(z**2+z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
LinearRecurrence[{3, 0, -5, 0, 3, 1}, {1, 0, 4, 5, 15, 28}, 50] (* G. C. Greubel, Jan 01 2018 *)
-
PARI
x='x+O('x^30); Vec(x*(1-x)*(1-2*x+2*x^2)/(1-x-x^2)^3) \\ G. C. Greubel, Jan 01 2018
Formula
G.f.: x*(1-x)*(1-2*x+2*x^2)/(1-x-x^2)^3. - Ralf Stephan, Apr 23 2004, corrected Feb 08 2006
a(n) = a(n-1) + a(n-2) + n*Fibonacci(n-2) - (n-1)*Fibonacci(n-3) for n >= 3; a(1)=1, a(2)=0. - Emeric Deutsch, May 20 2006
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6). - G. C. Greubel, Jan 01 2018
Extensions
More terms from Emeric Deutsch, Feb 07 2006
Comments