A006501 Expansion of (1+x^2) / ( (1-x)^2 * (1-x^3)^2 ).
1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 80, 100, 125, 150, 180, 216, 252, 294, 343, 392, 448, 512, 576, 648, 729, 810, 900, 1000, 1100, 1210, 1331, 1452, 1584, 1728, 1872, 2028, 2197, 2366, 2548, 2744, 2940, 3150, 3375, 3600, 3840, 4096, 4352, 4624, 4913, 5202
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. E. Bergum and V. E. Hoggatt, Jr., A combinatorial problem involving recursive sequences and tridiagonal matrices, Fib. Quart., 16 (1978), 113-118.
- Dhruv Mubayi, Counting substructures II: Hypergraphs, Combinatorica 33 (2013), no. 5, 591--612. MR3132928.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
Crossrefs
Programs
-
Maple
A006501:=(1+z**2)/(z**2+z+1)**2/(z-1)**4; # Simon Plouffe in his 1992 dissertation
-
Mathematica
CoefficientList[Series[(1+x^2)/(1-x)^2 /(1-x^3)^2,{x,0,50}],x] (* Vincenzo Librandi, Jun 16 2012 *)
Formula
a(n) = [(n+3)/3] * [(n+4)/3] * [(n+5)/3]. - Reinhard Zumkeller, May 18 2004
a(n-3) = Sum_{k=0..n} [k/3]*[(k+1)/3]. - Mitch Harris, Dec 02 2004
Sum_{n>=0} 1/a(n) = 1 + zeta(3). - Amiram Eldar, Jan 10 2023
a(3*m) = (m+1)^3 (A000578). - Bernard Schott, Feb 22 2023
Extensions
More terms from Reinhard Zumkeller, May 18 2004
Comments