cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006501 Expansion of (1+x^2) / ( (1-x)^2 * (1-x^3)^2 ).

Original entry on oeis.org

1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 80, 100, 125, 150, 180, 216, 252, 294, 343, 392, 448, 512, 576, 648, 729, 810, 900, 1000, 1100, 1210, 1331, 1452, 1584, 1728, 1872, 2028, 2197, 2366, 2548, 2744, 2940, 3150, 3375, 3600, 3840, 4096, 4352, 4624, 4913, 5202
Offset: 0

Views

Author

Keywords

Comments

a(n+3) = maximal product of three numbers with sum n: a(n) = max(r*s*t), n = r+s+t. - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 10 2003
It appears that k is a term of the sequence if and only if k is a positive integer such that floor(v) * ceiling(v) * round(v) = k, where v = k^(1/3). - John W. Layman, Mar 21 2012
The sequence floor(n/3)*floor((n+1)/3)*floor((n+2)/3) is essentially the same: 0, 0, 0, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 80, 100, 125, 150, 180, 216, 252, ... - N. J. A. Sloane, Dec 27 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), this sequence (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).

Programs

  • Maple
    A006501:=(1+z**2)/(z**2+z+1)**2/(z-1)**4; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(1+x^2)/(1-x)^2 /(1-x^3)^2,{x,0,50}],x] (* Vincenzo Librandi, Jun 16 2012 *)

Formula

a(n) = [(n+3)/3] * [(n+4)/3] * [(n+5)/3]. - Reinhard Zumkeller, May 18 2004
a(n-3) = Sum_{k=0..n} [k/3]*[(k+1)/3]. - Mitch Harris, Dec 02 2004
Conjecture: a(n) = A144677(n) + A144677(n-2). - R. J. Mathar, Mar 15 2011
Sum_{n>=0} 1/a(n) = 1 + zeta(3). - Amiram Eldar, Jan 10 2023
a(3*m) = (m+1)^3 (A000578). - Bernard Schott, Feb 22 2023

Extensions

More terms from Reinhard Zumkeller, May 18 2004