cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A076057 Numbers k such that Sum_{j=1..k} A006513(j) = 3*k/2.

Original entry on oeis.org

2, 4, 8, 16, 18, 32, 38, 46, 48, 62, 66, 80, 90, 102, 120, 138, 158, 160, 180, 212, 242, 278, 324, 364, 436, 482, 574, 576, 658, 736, 738, 882, 892, 900, 972, 974, 976, 1162, 1164, 1318, 1320, 1524, 1526, 1528, 1762, 1788, 1796, 1982, 2342, 2344, 2346, 2386, 2392, 2634, 3110
Offset: 1

Views

Author

Benoit Cloitre, Oct 30 2002

Keywords

Crossrefs

Programs

  • PARI
    f(n) = if (n%2, (3*n+1)/2, n/2); \\ A014682
    g(n) = my(last = n); while (1, my(new = f(f(last))); if (new == last, return(new)); last = new;); \\ A006513
    isok(m) = !(m%2) && (sum(k=1, m, g(k)) == 3*m/2); \\ Michel Marcus, Feb 03 2022
    
  • PARI
    f(n) = if (n%2, (3*n+1)/2, n/2); \\ A014682
    g(n) = my(last = n); while (1, my(new = f(f(last))); if (new == last, return(new)); last = new;); \\ A006513
    lista(nn) = {my(v = vector(nn, k, g(k)), w = vector(nn)); w[1] = v[1]; for (i=2, nn, w[i] = w[i-1] + v[i];); forstep (i=2, nn, 2, if (w[i] == 3*i/2, print1(i, ", ")););} \\ Michel Marcus, Feb 03 2022

Formula

a(n) seems to be asymptotic to c*n^2 with 1/2 < c < 1.

Extensions

More terms from Michel Marcus, Feb 03 2022

A076054 a(n) = Sum_{k=1..n} A006513(k).

Original entry on oeis.org

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 40, 42, 44, 46, 48, 49, 50, 51, 53, 55, 57, 59, 61, 63, 65, 66, 67, 68, 69, 70, 72, 74, 76, 78, 80, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 101, 103, 105, 107
Offset: 1

Views

Author

Benoit Cloitre, Oct 30 2002

Keywords

Crossrefs

Programs

  • PARI
    f(n) = if (n%2, (3*n+1)/2, n/2); \\ A014682
    g(n) = my(last = n); while (1, my(new = f(f(last))); if (new == last, return(new)); last = new;); \\ A006513
    a(n) = sum(k=1, n, g(k)); \\ Michel Marcus, Feb 03 2022

Formula

a(n) seems to be asymptotic to (3/2)*n.

A076182 a(n) = A006666(n) mod 2.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Benoit Cloitre, Nov 01 2002

Keywords

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,s=n; c=0; while(s>1,s=(s%2)*(3*s+1)/2+(1-s%2)*s/2; c++); c)%2
    
  • Scheme
    (define (A076182 n) (modulo (A006666 n) 2))
    (definec (A006666 n) (if (= 1 n) 0 (+ 1 (A006666 (A014682 n))))) ;; With memoization-macro definec
    (define (A014682 n) (if (even? n) (/ n 2) (/ (+ n n n 1) 2)))
    ;; Antti Karttunen, Aug 13 2017

Formula

a(n) = A006513(n) - 1.
Apparently also the antiparity of A064433. - Ralf Stephan, Nov 16 2004

A076138 a(1)=1; a(n+1) is the smallest integer > a(n) such that C_2k(a(n+1))=C_2k(a(n)) for k large enough, where C_m(n) is the modified Collatz map iterated m times on n ( x->x/2 if x is even x->(3x+1)/2 if x is odd).

Original entry on oeis.org

1, 4, 5, 6, 11, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 33, 34, 35, 43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 63, 64, 72, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 113, 130, 131, 132, 133, 134, 135
Offset: 1

Views

Author

Benoit Cloitre, Oct 31 2002

Keywords

Comments

a(n) seems to be asymptotic to 2*n and a(n)=2*n for some n (5, 14, 43, 54, 72, 93, ...)
Positions of 1's in A006513. - Sean A. Irvine, Mar 21 2025

Crossrefs

Formula

a(n+1) = min (k>a(n) : A076057(k)=A076057(a(n))).

Extensions

Missing 16 and 18 inserted by Sean A. Irvine, Mar 21 2025
Showing 1-4 of 4 results.