A006532 Numbers whose sum of divisors is a square.
1, 3, 22, 66, 70, 81, 94, 115, 119, 170, 210, 214, 217, 265, 282, 310, 322, 343, 345, 357, 364, 382, 385, 400, 472, 497, 510, 517, 527, 642, 651, 679, 710, 742, 745, 782, 795, 820, 862, 884, 889, 930, 935, 966, 970, 1004, 1029, 1066, 1080, 1092, 1146
Offset: 1
Examples
3 is in the sequence because its divisors are 1 and 3, which add up to 4 = 2^2. 22 is in the sequence because its divisors are 1, 2, 11, 22, which add up to 36 = 6^2. 32 is not in the sequence, because its divisors, 1, 2, 4, 8, 16, 32, add up to 63, which is one short of 8^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 8.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 94, p. 33, Ellipses, Paris 2008.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Abraham Verghese, Cutting for Stone: A Novel. New York: Alfred A. Knopf, 2009, p.361, p. 528 large-print edition.
- David Wells, Curious and interesting numbers, Penguin Books, p. 111.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Frits Beukers, Florian Luca and Frans Oort, Power Values of Divisor Sums, The American Mathematical Monthly, Vol. 119, No. 5 (May 2012), pp. 373-380.
- J. Meeus & N. J. A. Sloane, Correspondence, 1974-1975
- Index entries for sequences related to sums of divisors
Programs
-
Haskell
a006532 n = a006532_list !! (n-1) a006532_list = filter ((== 1) . a010052 . a000203) [1..] -- Reinhard Zumkeller, Jun 09 2013
-
Magma
[n: n in [1..2000] | IsSquare(&+(Divisors(n)))]; // Vincenzo Librandi, May 31 2015
-
Maple
for i from 1 to 1000 do if issqr(sigma(i)) then print(i); fi; od;
-
Mathematica
Select[ Range[ 1150 ], IntegerQ[ Sqrt[ DivisorSigma[ 1, # ] ] ]& ]
-
PARI
is(n)=issquare(sigma(n)) \\ Charles R Greathouse IV, Jun 05 2013
-
Sage
[n for n in (1..1000) if sigma(n).is_square()] # Giuseppe Coppoletta, Dec 16 2014
Formula
Extensions
a(42)-a(51) from Enoch Haga, circa 1999
Comments