cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A178492 Primitive elements of A006532, i.e., which are not product of earlier terms (> 1) in that sequence.

Original entry on oeis.org

1, 3, 22, 70, 81, 94, 115, 119, 170, 214, 217, 265, 310, 322, 343, 364, 382, 385, 400, 472, 497, 517, 527, 679, 710, 742, 745, 782, 820, 862, 884, 889, 935, 970, 1004, 1066, 1080, 1174, 1177, 1207, 1219, 1270, 1393, 1426, 1465, 1501, 1566, 1612, 1624, 1645
Offset: 1

Views

Author

Keywords

Comments

If a,b are coprime elements of A006532, their product is again in A006532. But there are some a,b which are not coprime and still a,b,a*b are in A006532: First examples are 820*{2860, 3340, 8580, 10020, 11620, ...}.

Examples

			The terms a(2)=3 and a(3)=22 are coprime elements of A006532, therefore 3*22=66 is a non-primitive element of A006532, and not listed in this sequence.
		

Programs

  • PARI
    for(n=1,1e4, issquare(sigma(n))||next; fordiv( n,d, d>1||next; d*d>n & break; issquare(sigma(d)) & issquare(sigma(n/d)) & next(2) ); print1(n","))

A007678 Number of regions in regular n-gon with all diagonals drawn.

Original entry on oeis.org

0, 0, 1, 4, 11, 24, 50, 80, 154, 220, 375, 444, 781, 952, 1456, 1696, 2500, 2466, 4029, 4500, 6175, 6820, 9086, 9024, 12926, 13988, 17875, 19180, 24129, 21480, 31900, 33856, 41416, 43792, 52921, 52956, 66675, 69996, 82954, 86800, 102050, 97734, 124271, 129404, 149941
Offset: 1

Views

Author

N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)

Keywords

Comments

This sequence and A006533 are two equivalent ways of presenting the same sequence.
A quasipolynomial of order 2520. - Charles R Greathouse IV, Jan 15 2013
Also the circuit rank of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
This sequence only counts polygons, in contrast to A006533 which also counts the n segments of the circumscribed circle delimited by the edges of the regular n-gon. Therefore a(n) = A006533(n) - n. See also A006561 which counts the intersection points, and A350000 which considers iterated "cutting along diagonals". - M. F. Hasler, Dec 13 2021
The Petrie polygon orthographic projection of a regular n-simplex is a regular (n+1)-gon with all diagonals drawn. Hence a(n+1) is the number of regions in the Petrie polygon of a regular n-simplex. - Mohammed Yaseen, Nov 05 2022

References

  • Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
  • C. A. Pickover, The Mathematics of Oz, Problem 58 "The Beauty of Polygon Slicing", Cambridge University Press, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001006, A054726, A006533, A006561, A006600, A007569 (number of vertices), A006522, A135565 (number of line segments).
A062361 gives number of triangles, A331450 and A331451 give distribution of polygons by number of sides.
A333654, A335614, A335646, A337330 give the number of internal n-gon to k-gon contacts for n>=3, k>=n.
A187781 gives number of distinct regions.

Programs

  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0]; R[n_]:=If[n<3, 0, (n^4-6n^3+23n^2-42n+24)/24 + del[2,n](-5n^3+42n^2-40n-48)/48 - del[4,n](3n/4) + del[6,n](-53n^2+310n)/12 + del[12,n](49n/2) + del[18,n]*32n + del[24,n]*19n - del[30,n]*36n - del[42,n]*50n - del[60,n]*190n - del[84,n]*78n - del[90,n]*48n - del[120,n]*78n - del[210,n]*48n]; Table[R[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
  • PARI
    /* Only for odd n > 3, not suitable for other values of n! */ { a(n)=local(nr,x,fn,cn,fn2); nr=0; fn=floor(n/2); cn=ceil(n/2); fn2=(fn-1)^2-1; nr=fn2*n+fn+(n-2)*fn+cn; x=(n-5)/2; if (x>0,nr+=x*(x+1)*(2*x+1)/6*n); nr; } \\ Jon Perry, Jul 08 2003
    
  • PARI
    apply( {A007678(n)=if(n%2, (((n-6)*n+23)*n-42)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 31, 40) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
    
  • Python
    def d(n,m): return not n % m
    def A007678(n): return (1176*d(n,12)*n - 3744*d(n,120)*n + 1536*d(n,18)*n - d(n,2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n,210)*n + 912*d(n,24)*n - 1728*d(n,30)*n - 36*d(n,4)*n - 2400*d(n,42)*n - 4*d(n,6)*n*(53*n - 310) - 9120*d(n,60)*n - 3744*d(n,84)*n - 2304*d(n,90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 84*n)//48 + 1 # Chai Wah Wu, Mar 08 2021

Formula

For odd n > 3, a(n) = sumstep {i=5, n, 2, (i-2)*floor(n/2)+(i-4)*ceiling(n/2)+1} + x*(x+1)*(2*x+1)/6*n), where x = (n-5)/2. Simplifying the floor/ceiling components gives the PARI code below. - Jon Perry, Jul 08 2003
For odd n, a(n) = (24 - 42*n + 23*n^2 - 6*n^3 + n^4)/24. - Graeme McRae, Dec 24 2004
a(n) = A006533(n) - n. - T. D. Noe, Dec 23 2006
For odd n, binomial transform of [1, 10, 29, 36, 16, 0, 0, 0, ...] = [1, 11, 50, 154, ...]. - Gary W. Adamson, Aug 02 2011
a(n) = A135565(n) - A007569(n) + 1. - Max Alekseyev
See the Mma code in A006533 for the explicit Poonen-Rubenstein formula that holds for all n. - N. J. A. Sloane, Jan 23 2020

Extensions

More terms from Graeme McRae, Dec 26 2004
a(1) = a(2) = 0 prepended by Max Alekseyev, Dec 01 2011

A020477 Numbers whose sum of divisors is a cube.

Original entry on oeis.org

1, 7, 102, 110, 142, 159, 187, 381, 690, 714, 770, 994, 1034, 1054, 1065, 1113, 1164, 1173, 1265, 1293, 1309, 1633, 1643, 2667, 3638, 3937, 4505, 4830, 4855, 5373, 5671, 5730, 5997, 6486, 6517, 6906, 7130, 7238, 7378, 7455, 7755, 7905, 8148, 8211, 8426
Offset: 1

Views

Author

Keywords

Examples

			Factor 381; divisors are 1, 3, 127, 381. Sum is 512. Integral cube root of n is 8. So 381 is in sequence.
		

References

  • David Wells, Curious and Interesting Numbers (Revised), Penguin Books, page 118.

Crossrefs

Programs

  • Mathematica
    Do[If[IntegerQ[DivisorSigma[1, n]^(1/3)], Print[n]], {n, 1, 10^4}]
    Select[Range[10000],IntegerQ[Surd[DivisorSigma[1,#],3]]&] (* Harvey P. Dale, Nov 16 2014 *)
  • PARI
    isok(n) = ispower(sigma(n), 3); \\ Michel Marcus, Jul 03 2014

A006533 Place n equally-spaced points around a circle and join every pair of points by a chord; this divides the circle into a(n) regions.

Original entry on oeis.org

1, 2, 4, 8, 16, 30, 57, 88, 163, 230, 386, 456, 794, 966, 1471, 1712, 2517, 2484, 4048, 4520, 6196, 6842, 9109, 9048, 12951, 14014, 17902, 19208, 24158, 21510, 31931, 33888, 41449, 43826, 52956, 52992, 66712, 70034, 82993, 86840, 102091, 97776, 124314, 129448, 149986, 155894, 179447, 179280
Offset: 1

Views

Author

N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)

Keywords

Comments

This sequence and A007678 are two equivalent ways of presenting the same sequence. - N. J. A. Sloane, Jan 23 2020
In contrast to A007678, which only counts the polygons, this sequence also counts the n segments of the circle bounded by the arc of the circle and the straight line, both joining two neighboring points on the circle. Therefore a(n) = A007678(n) + n. - M. F. Hasler, Dec 12 2021

References

  • Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.

Programs

  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0];
    R[n_]:=(n^4-6n^3+23n^2-18n+24)/24 + del[2,n](-5n^3+42n^2-40n-48)/48 - del[4,n](3n/4) + del[6,n](-53n^2+310n)/12 + del[12,n](49n/2) + del[18,n]*32n + del[24,n]*19n - del[30,n]*36n - del[42,n]*50n - del[60,n]*190n - del[84,n]*78n - del[90,n]*48n - del[120,n]*78n - del[210,n]*48n;
    Table[R[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
  • PARI
    apply( {A006533(n)=if(n%2, (((n-6)*n+23)*n-18)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 19, 28) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
  • Python
    def d(n,m): return not n % m
    def A006533(n): return (1176*d(n,12)*n - 3744*d(n,120)*n + 1536*d(n,18)*n - d(n,2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n,210)*n + 912*d(n,24)*n - 1728*d(n,30)*n - 36*d(n,4)*n - 2400*d(n,42)*n - 4*d(n,6)*n*(53*n - 310) - 9120*d(n,60)*n - 3744*d(n,84)*n - 2304*d(n,90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 36*n)//48 + 1 # Chai Wah Wu, Mar 08 2021
    

Formula

Poonen and Rubinstein give an explicit formula for a(n) (see Mma code).
a(n) = A007678(n) + n. - T. D. Noe, Dec 23 2006

Extensions

Added more terms from b-file. - N. J. A. Sloane, Jan 23 2020
Edited definition. - N. J. A. Sloane, Mar 17 2024

A008848 Squares whose sum of divisors is a square.

Original entry on oeis.org

1, 81, 400, 32400, 1705636, 3648100, 138156516, 295496100, 1055340196, 1476326929, 2263475776, 2323432804, 2592846400, 2661528100, 7036525456, 10994571025, 17604513124, 39415749156, 61436066769, 85482555876, 90526367376, 97577515876, 98551417041
Offset: 1

Views

Author

Keywords

Comments

Solutions to sigma(x^2) = (2k+1)^2. - Labos Elemer, Aug 22 2002
Intersection of A006532 and A000290. The product of any two coprime terms is also in this sequence. - Charles R Greathouse IV, May 10 2011
Also intersection of A069070 and A000290. - Michel Marcus, Oct 06 2013
Conjectures: (1) a(2) = 81 is the only prime power (A246655) in this sequence. (2) 81 and 400 are only terms x for which sigma(x) is in A246655. (3) x = 1 is the only such term that sigma(x) is also a term. See also comments in A074386, A336547 and A350072. - Antti Karttunen, Jul 03 2023, (2) corrected in May 11 2024

Examples

			n=81: sigma(81) = 1+3+9+27+81 = 121 = 11^2.
n=400: sigma(400) = sigma(16)*sigma(25) = 31*31 = 961.
n=32400 (= 81*400): sigma(32400) = 116281 = 341^2 = 121*961.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 10.
  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

Crossrefs

Terms of A008847 squared.
Subsequence of A000290, of A006532, and of A069070.

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n^2]; If[IntegerQ[Sqrt[s]]&&Mod[s, 2]==1, Print[n^2]], {n, 1, 10000000}] (* Labos Elemer *)
    Select[Range[320000]^2,IntegerQ[Sqrt[DivisorSigma[1,#]]]&] (* Harvey P. Dale, Feb 22 2015 *)
  • PARI
    for(n=1,1e6,if(issquare(sigma(n^2)), print1(n^2", "))) \\ Charles R Greathouse IV, May 10 2011

Formula

a(n) = A008847(n)^2.

A048251 a(n) is the smallest number whose sum of divisors is 6^n.

Original entry on oeis.org

1, 5, 22, 102, 510, 3210, 17490, 112890, 600270, 3466470, 20205570, 118879530, 697118730, 3949737330, 24217298490, 143487592710, 841422307110, 4973562896610, 29520886859310, 180254162529210, 1052751138726210, 6301225298627490, 37854941354933010, 224270177470178070
Offset: 0

Views

Author

Keywords

Comments

Terms of this sequence are products of distinct terms in A005105. - Ray Chandler, Sep 01 2010

Examples

			sigma(k) = 1296 = 6^4 for each k in {510, 642, 710, 742, 782, 795, 862, 935, 1177, 1207, 1219}; the smallest of these is a(4)=510.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k=1); while (sigma(k) != 6^n, k++); k;} \\ Michel Marcus, May 14 2018

Formula

a(n) = Min{k : A000203(k) = 6^n}.

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
a(15)-a(24) from Walter Kehowski, Aug 22 2010
Edited and extended by Ray Chandler, Sep 01 2010
Error in sequence corrected by N. J. A. Sloane, Oct 04 2010

A006535 Number of one-sided hexagonal polyominoes with n cells.

Original entry on oeis.org

1, 1, 3, 10, 33, 147, 620, 2821, 12942, 60639, 286190, 1364621, 6545430, 31586358, 153143956, 745700845, 3644379397, 17869651166, 87877879487, 433301253231, 2141584454057, 10607707971062, 52646117638427, 261756764824964, 1303625908234997, 6502430891223011, 32480041218465452, 162454295068924189, 813541940383789255, 4078750395194965720
Offset: 1

Views

Author

Keywords

References

  • J. Meeus, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = 2*A000228(n) - A030225(n).

Extensions

a(7)-a(12) from David W. Wilson
a(13) from Achim Flammenkamp, Feb 15 1999
a(14)-a(20) from Joseph Myers, Sep 21 2002
a(21)-a(30) from John Mason, Jul 18 2023

A019423 Numbers whose sum of divisors is a fifth power.

Original entry on oeis.org

1, 21, 31, 651, 889, 3210, 3498, 3710, 3882, 3910, 4310, 4922, 4982, 5182, 5457, 5885, 6035, 6095, 6307, 6797, 7117, 7327, 7597, 24573, 27559, 71193, 82110, 90510, 94981, 97410, 98671, 99301, 99510, 100110, 103362, 104622, 107778, 108438, 108822
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n:n in [1..10000]| IsPower(SumOfDivisors(n),5)]; // Marius A. Burtea, Apr 17 2019
  • PARI
    lista(nn) = {for (i=1, nn, s = sigma(i); if (s == 1 || ispower(s, 5), print1(i, ", ")););} \\ Michel Marcus, Jun 12 2013
    

A008847 Numbers k such that sum of divisors of k^2 is a square.

Original entry on oeis.org

1, 9, 20, 180, 1306, 1910, 11754, 17190, 32486, 38423, 47576, 48202, 50920, 51590, 83884, 104855, 132682, 198534, 247863, 292374, 300876, 312374, 313929, 334330, 345807, 376095, 428184, 433818, 458280, 464310, 469623, 498892, 623615, 754956, 768460, 787127, 943695, 985369
Offset: 1

Views

Author

Keywords

Comments

These are the square roots of squares in A006532. - M. F. Hasler, Oct 23 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 10.
  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

Crossrefs

Programs

  • Haskell
    a008847 n = a008847_list !! (n-1)
    a008847_list = filter ((== 1) . a010052 . a000203 . a000290) [1..]
    -- Reinhard Zumkeller, Mar 27 2013
  • Maple
    with(numtheory): readlib(issqr): for i from 1 to 10^5 do if issqr(sigma(i^2)) then print(i); fi; od;
  • Mathematica
    s = {}; Do[ If[IntegerQ[ Sqrt[ DivisorSigma[1, n^2]]], Print[n]; AppendTo[s, n]], {n, 10^6}]; s (* Jean-François Alcover, May 05 2011 *)
    Select[Range[1000000],IntegerQ[Sqrt[DivisorSigma[1,#^2]]]&] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    is_A008847(n)=issquare(sigma(n^2)) \\ M. F. Hasler, Oct 23 2010
    

Formula

A163763(n) = sqrt(sigma(A008847(n)^2)). - M. F. Hasler, Oct 16 2010
a(n) = sqrt(A008848(n)). - Zak Seidov, May 01 2016

A048699 Nonprime numbers whose sum of aliquot divisors (A001065) is a perfect square.

Original entry on oeis.org

1, 9, 12, 15, 24, 26, 56, 75, 76, 90, 95, 119, 122, 124, 140, 143, 147, 153, 176, 194, 215, 243, 287, 332, 363, 386, 407, 477, 495, 507, 511, 524, 527, 536, 551, 575, 688, 738, 791, 794, 815, 867, 871, 892, 924, 935, 963, 992, 1075, 1083, 1159, 1196, 1199, 1295, 1304
Offset: 1

Views

Author

Keywords

Comments

The sum of aliquot divisors of prime numbers is 1.
If a^2 is an odd square for which a^2-1 = p + q with p,q primes, then p*q is a term. If m = 2^k-1 is a Mersenne prime then m*(2^k) (twice an even perfect number) is a term. If b = 2^j is a square and b-7 = 3s is a semiprime then 4s is a term. - Metin Sariyar, Apr 02 2020

Examples

			a(3)=15; aliquot divisors are 1,3,5; sum of aliquot divisors = 9 and 3^2=9.
		

Crossrefs

Cf. A001065, A006532, A020477, A048698, A073040 (includes primes).

Programs

  • Maple
    a := []; for n from 1 to 2000 do if sigma(n) <> n+1 and issqr(sigma(n)-n) then a := [op(a), n]; fi; od: a;
  • Mathematica
    nn=1400;Select[Complement[Range[nn],Prime[Range[PrimePi[nn]]]],IntegerQ[ Sqrt[DivisorSigma[1,#]-#]]&] (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    isok(k) = !ispseudoprime(k) && issquare(sigma(k) - k); \\ Michel Marcus, May 13 2025
Showing 1-10 of 53 results. Next