cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A074387 Duplicate of A008848.

Original entry on oeis.org

1, 81, 400, 32400, 1705636, 3648100, 138156516, 295496100, 1055340196, 1476326929
Offset: 1

Views

Author

Keywords

A336547 Numbers k such that for 1 <= i < j <= h, all sigma(p_i^e_i), sigma(p_j^e_j) are pairwise coprime, when k = p_1^e_1 * ... * p_h^e_h, where each p_i^e_i is the maximal power of prime p_i dividing k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 31, 32, 36, 37, 38, 41, 43, 44, 45, 47, 48, 49, 50, 53, 54, 56, 59, 61, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 79, 80, 81, 83, 86, 89, 92, 96, 97, 99, 100, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 121, 122, 124, 125
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2020

Keywords

Comments

Numbers k such that A051027(k) = Product_{p^e||k} A051027(p^e) = A353802(n). Here each p^e is the maximal prime power divisor of k, and A051027(k) = sigma(sigma(k)). Numbers at which points A051027 appears to be multiplicative.
Proof that this interpretation is equal to the main definition:
(1) If none of sigma(p_1^e_1), ..., sigma(p_k^e_k) share prime factors, then A051027(k) = sigma(sigma(p_1^e_1) * ... * sigma(p_k^e_k)) = A051027(p_1^e_1) * ... * A051027(p_k^e_k), by multiplicativity of sigma.
(2) On the other hand, if say, gcd(sigma(p_i^e_i), sigma(p_j^e_j)) = c > 1 for some distinct i, j, then that c has at least one prime factor q, with product t = sigma(p_1^e_1) * ... * sigma(p_k^e_k) having a divisor of the form q^v (where v = valuation(t,q)), and the same prime factor q occurs as a divisor in more than one of the sigma(p_i^e_j), in the form q^k, with the exponents summing to v, then it is impossible to form sigma(q^v) = (1 + q + q^2 + ... + q^v) as a product of some sigma(q^k_1) * ... * sigma(q^k_z), i.e., as a product of (1 + q + ... + q^k_1) * ... * (1 + q + ... + q^k_z), with v = k_1 + ... + k_z, because such a product is always larger than (1 + q + ... + q^v). And if there are more such cases of "split primes", then each of them brings its own share to this monotonic inequivalence, thus Product_{p^e|n} A051027(p^e) = A353802(n) >= A051027(n), for all n.
From Antti Karttunen, May 07 2022: (Start)
Also numbers k such that A062401(k) = phi(sigma(n)) = Product_{p^e||k} A062401(p^e) = A353752(n).
Proof that also this interpretation is equal to the main definition:
(1) like in (1) above, if none of sigma(p_1^e_1), ..., sigma(p_k^e_k) share prime factors, then by the multiplicativity of phi.
(2) On the other hand, if say, gcd(sigma(p_i^e_i), sigma(p_j^e_j)) = c > 1 for some distinct i, j, then that c must have a prime factor q occurring in both sigma(p_i^e_i) and sigma(p_j^e_j), with say q^x being the highest power of q in the former, and q^y in the latter. Then phi(q^x)*phi(q^y) < phi(q^(x+y)), i.e. here the inequivalence acts to the opposite direction than with sigma(sigma(...)), so we have A353752(n) <= A062401(n) for all n.
(End)
From Antti Karttunen, May 22 2022: (Start)
All even perfect numbers (even terms of A000396) are included in this sequence. In general, for any perfect number n in this sequence, map k -> A026741(sigma(k)) induces on its unitary prime power divisors (p^e||n) a permutation that is a single cycle, mapping each one of them to the next larger one, except that the largest is mapped to the smallest one. Therefore, for a hypothetical odd perfect number n = x*a*b*c*d*e*f*g*h to be included in this sequence, where x is Euler's special factor of the form (4k+1)^(4h+1), and a .. h are even powers of odd primes (of which there are at least eight distinct ones, see P. P. Nielsen reference in A228058), further constraints are imposed on it: (1) that h < x < 2*a (here assuming that a, b, c, ..., g, h have already been sorted by their size, thus we have a < b < ... < g < h < x < 2*a, and (2), that we must also have sigma(a) = b, sigma(b) = c, ..., sigma(f) = g, sigma(h) = x, and sigma(x) = 2*a. Note that of the 400 initial terms of A008848, only its second term 81 is a prime power, so empirically this seems highly unlikely to ever happen.
(End)

Examples

			28 = 2^2 * 7 is present, as sigma(2^2) = 7 and sigma(7) = 8, and 7 and 8 are relatively prime (do not share prime factors). Likewise for all even terms of A000396. - _Antti Karttunen_, May 09 2022
		

Crossrefs

Cf. A051027, A062401, A336546 (characteristic function), A336548 (complement).
Positions of zeros in A336562, in A353753, and in A353803.
Positions of ones in A353755, in A353784, and in A353806.
Union of A000961 and A336549.
Subsequence of A336358 and of A336557.

Programs

Formula

{k | A336562(k) == 0}. - Antti Karttunen, May 09 2022

Extensions

The old definition moved to comments and replaced with an alternative definition from the comment section by Antti Karttunen, May 07 2022

A008847 Numbers k such that sum of divisors of k^2 is a square.

Original entry on oeis.org

1, 9, 20, 180, 1306, 1910, 11754, 17190, 32486, 38423, 47576, 48202, 50920, 51590, 83884, 104855, 132682, 198534, 247863, 292374, 300876, 312374, 313929, 334330, 345807, 376095, 428184, 433818, 458280, 464310, 469623, 498892, 623615, 754956, 768460, 787127, 943695, 985369
Offset: 1

Views

Author

Keywords

Comments

These are the square roots of squares in A006532. - M. F. Hasler, Oct 23 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 10.
  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

Crossrefs

Programs

  • Haskell
    a008847 n = a008847_list !! (n-1)
    a008847_list = filter ((== 1) . a010052 . a000203 . a000290) [1..]
    -- Reinhard Zumkeller, Mar 27 2013
  • Maple
    with(numtheory): readlib(issqr): for i from 1 to 10^5 do if issqr(sigma(i^2)) then print(i); fi; od;
  • Mathematica
    s = {}; Do[ If[IntegerQ[ Sqrt[ DivisorSigma[1, n^2]]], Print[n]; AppendTo[s, n]], {n, 10^6}]; s (* Jean-François Alcover, May 05 2011 *)
    Select[Range[1000000],IntegerQ[Sqrt[DivisorSigma[1,#^2]]]&] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    is_A008847(n)=issquare(sigma(n^2)) \\ M. F. Hasler, Oct 23 2010
    

Formula

A163763(n) = sqrt(sigma(A008847(n)^2)). - M. F. Hasler, Oct 16 2010
a(n) = sqrt(A008848(n)). - Zak Seidov, May 01 2016

A069070 Numbers n such that n*sigma(n) is a perfect square.

Original entry on oeis.org

1, 40, 81, 135, 216, 224, 400, 819, 1372, 3240, 3744, 4650, 6318, 18144, 21700, 27930, 30240, 32400, 32760, 69312, 71148, 91694, 111132, 174592, 175500, 185220, 215472, 241395, 278318, 293907, 327600, 336675, 362700, 386232, 515450, 958737
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Also n such that the squarefree part of n (A007913) equals the squarefree part of sigma(n), A355928.
Also n such that abundancy of n, sigma(n)/n is a rational square. - Michel Marcus, Oct 06 2013
See A230043, resp. A230538, for n whose abundancy is a rational cube, resp. fourth power. - M. F. Hasler, Nov 02 2013

Crossrefs

Cf. A008848, A027687 (subsequences).
Cf. also A230043, A230538.
Positions of 0's in A355929.

Programs

  • Mathematica
    Select[Range[1000000],IntegerQ[Sqrt[# DivisorSigma[1,#]]]&] (* Harvey P. Dale, Dec 24 2012 *)
  • PARI
    for(n=1,1000000,if(issquare(n*sigma(n)),print1(n,",")))
    
  • PARI
    isok(n) = issquare(sigma(n)/n); \\ Michel Marcus, Oct 06 2013

Extensions

More terms from Rick L. Shepherd, Apr 07 2002

A083674 Triangular numbers whose sum of divisors is also a triangular number.

Original entry on oeis.org

1, 36, 45, 23220, 105111, 135460, 2492028, 5286126, 6604795, 14308575, 45025305, 50516326, 54742416, 99017628, 108125865, 152486916, 386767578, 1083567628, 1561818105, 3169234305, 5005551540, 5718242211, 6125307903, 6479715880
Offset: 1

Views

Author

Shyam Sunder Gupta, Jun 15 2003

Keywords

Comments

1, 5286126, 45025305, 54742416, ... are also hexagonal and their sum of divisors too. - Michel Marcus, Apr 20 2014

Examples

			a(2)=36 because sum of divisors of 36 =1+2+3+4+6+9+12+18+36=91, which is also a triangular number.
		

Crossrefs

Cf. A008848 (similar, with squares).

Programs

  • Mathematica
    Select[Accumulate[Range[120000]],OddQ[Sqrt[8*DivisorSigma[1,#]+1]]&] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    isok(n) = ispolygonal(n, 3) && ispolygonal(sigma(n), 3); \\ Michel Marcus, Apr 20 2014

A350072 a(n) = sigma(n^2) / gcd(sigma(n^2), A003961(n^2)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 7, 13, 31, 31, 91, 57, 127, 121, 31, 133, 403, 183, 133, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 427, 1093, 589, 871, 403, 993, 2047, 133, 2149, 1767, 3751, 1407, 889, 2379, 3937, 1723, 1729, 1893, 4123, 3751, 3871, 2257, 6643, 2801, 781, 3991, 1891, 2863, 7651, 589, 2413, 4953, 6097, 3541, 12493
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2021

Keywords

Comments

Conjecture: There are no 1's after the initial term. Remark: If there were some k = x^2 > 1, for which a(x) = 1, then sigma(k) would be a divisor of A003961(k). In other words, d = A350073(k) = A064989(sigma(k)) would be a divisor of k. Then, if that divisor were also a unitary divisor [with gcd(d,k/d) = 1], it would need to satisfy the equation sigma(k) = sigma(d) * sigma(k/d) = sigma(A064989(sigma(k))) * sigma(k/A064989(sigma(k))), because sigma is a multiplicative function. (Minor correction by Antti Karttunen, Jul 11 2023)
Note that if d = A064989(sigma(k)) were a unitary divisor of a square k, then sigma(k) would also be a square, the cases which are quite rare (see A008848 and A336547). Also compare to A349756. - Antti Karttunen, Jul 24 2022

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^(2*e); a[1] = 1; a[n_] := (s = Times @@ f1 @@@ (f = FactorInteger[n])) / GCD[s, Times @@ f2 @@@ f]; Array[a, 60] (* Amiram Eldar, Dec 12 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };
    A350072(n) = A349162(n^2);

Formula

a(n) = A349162(n^2).
a(n) = A065764(n) / A350071(n).

A231484 Numbers n such that n, sigma(n) and sigma(sigma(n)) are odd.

Original entry on oeis.org

1, 81, 1476326929, 10994571025, 61436066769, 98551417041, 119582481249, 141447449025, 220545762129, 388895668225, 619568914129, 890560253025, 970952066161, 2580138650961, 3076652813521, 3739640454225, 4138876942929, 4758545225281, 9262289646801, 26494089912081
Offset: 1

Views

Author

Vladimir Letsko, Nov 09 2013

Keywords

Comments

Contains exactly odd terms of A008848.
Odd n is a term if and only if both n and sigma(n) are perfect squares.

Examples

			81 is a term because 81, sigma(81) = 121 and sigma(sigma(81)) = 133 are all odd.
		

Crossrefs

Cf. A008848.

Programs

  • PARI
    forstep(r=1, 5147241, 2, n=r^2; if(sigma(sigma(n))%2<>0, print1(n ", "))) \\ Donovan Johnson, Nov 09 2013
    
  • PARI
    forstep(r=1, 5147241, 2, if(!isprime(r)&&issquare(sigma(n=r^2)), print1(n", "))) \\ Charles R Greathouse IV, Nov 12 2013

Extensions

a(5) corrected by Donovan Johnson, Nov 09 2013

A234641 Odd numbers n such that sigma(sigma(n^2)) is odd.

Original entry on oeis.org

1, 9, 38423, 104855, 247863, 313929, 345807, 376095, 469623, 623615, 787127, 943695, 985369, 1606281, 1754039, 1933815, 2034423, 2181409, 3043401, 5147241, 5545617, 5612535, 6385703, 7084143, 8868321, 10606679, 11470511, 11954409, 12276745, 12794655, 13213921, 14142695, 15512065, 15737953, 15786351, 16844135
Offset: 1

Views

Author

M. F. Hasler, Dec 28 2013

Keywords

Comments

The sum of divisors of a square is always odd, therefore these numbers have the property that x=n^2, y=sigma(x) and z=sigma(y) are all three odd.
This is the subsequence of odd terms of A008847.

Crossrefs

A074386 Numbers k such that sigma(k) is the square of a prime.

Original entry on oeis.org

3, 81, 400
Offset: 1

Views

Author

Labos Elemer, Aug 22 2002

Keywords

Comments

The next term, if it exists, is > 10^11. - Donovan Johnson, Aug 24 2012
a(4), if it exists, satisfies sigma(a(4)) > 10^36. - Hiroaki Yamanouchi, Sep 10 2014
If n belongs to this sequence, it may have at most two distinct prime divisors. If n=p^k, then sigma(p^k) = (p^(k+1)-1)/(p-1) = r^2 for some prime r. For k=1, it trivially has the only solution n=3; while for k>1 it is a partial case of the Nagell-Ljunggren equation and has the only prime solution r=11 (see Bennett-Levin 2015) corresponding to n=3^4=81. If n=p^k*q^m, then sigma(n) = (p^(k+1)-1)/(p-1) * (q^(m+1)-1)/(q-1) = r^2 for some prime r, implying that (p^(k+1)-1)/(p-1) = (q^(m+1)-1)/(q-1) = r. Here k+1 and m+1 must be odd distinct primes. The Goormaghtigh conjecture would imply that its only solution is n=400 with (p,k,q,m)=(5,2,2,4). - Max Alekseyev, Apr 24 2015

Examples

			sigma[{3,81,400}]={4,121,961}.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]; If[PrimeQ[Sqrt[s]], Print[n]], {n, 1, 1000000}] (* Corrected by N. J. A. Sloane, May 26 2008 *)

Extensions

Definition corrected by Juan Lopez, May 26 2008
Edited by N. J. A. Sloane, May 26 2008

A266890 Squares whose arithmetic derivative is a square.

Original entry on oeis.org

0, 1, 4, 256, 11664, 262144, 531441, 11943936, 156250000, 544195584, 4294967296, 7119140625, 24794911296, 160000000000, 195689447424, 1129718145924, 7290000000000, 8916100448256, 10851569165584, 95367431640625, 332150625000000, 406239826673664, 494424620106921
Offset: 1

Views

Author

Paolo P. Lava, Apr 08 2016

Keywords

Comments

This sequence is infinite since it contains all the numbers of the form 4^(k^2). - Giovanni Resta, May 28 2016

Examples

			0' = 0 = 0^2; 1' = 0 = 0^2; 4' = 4 = 2^2; 256' = 1024 = 32^2; 11664' = 46656 = 216^2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,n,p;
    for n from 0 to q do a:=n^2*add(op(2,p)/op(1,p),p=ifactors(n^2)[2]);
    if trunc(sqrt(a))*trunc(sqrt(a))=a then print(n^2);  fi;
    od; end: P(10^9);
  • Mathematica
    {0, 1}~Join~Select[Range[2, 10^5]^2, IntegerQ@ Sqrt[# Total[#2/#1 & @@@ FactorInteger[#]]] &] (* Michael De Vlieger, Oct 19 2021 *)
  • PARI
    ad(n) = if (n<1, 0, my(f = factor(n)); n*sum(k=1, #f~, f[k,2]/f[k,1]));
    lista(nn) = {for (n=0, nn, if (issquare(ad(n^2)), print1(n^2, ", ")););} \\ Michel Marcus, Apr 08 2016

Extensions

a(17)-a(23) from Giovanni Resta, May 28 2016
Showing 1-10 of 13 results. Next