A074387 Duplicate of A008848.
1, 81, 400, 32400, 1705636, 3648100, 138156516, 295496100, 1055340196, 1476326929
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
28 = 2^2 * 7 is present, as sigma(2^2) = 7 and sigma(7) = 8, and 7 and 8 are relatively prime (do not share prime factors). Likewise for all even terms of A000396. - _Antti Karttunen_, May 09 2022
a008847 n = a008847_list !! (n-1) a008847_list = filter ((== 1) . a010052 . a000203 . a000290) [1..] -- Reinhard Zumkeller, Mar 27 2013
with(numtheory): readlib(issqr): for i from 1 to 10^5 do if issqr(sigma(i^2)) then print(i); fi; od;
s = {}; Do[ If[IntegerQ[ Sqrt[ DivisorSigma[1, n^2]]], Print[n]; AppendTo[s, n]], {n, 10^6}]; s (* Jean-François Alcover, May 05 2011 *) Select[Range[1000000],IntegerQ[Sqrt[DivisorSigma[1,#^2]]]&] (* Harvey P. Dale, Aug 22 2011 *)
is_A008847(n)=issquare(sigma(n^2)) \\ M. F. Hasler, Oct 23 2010
Select[Range[1000000],IntegerQ[Sqrt[# DivisorSigma[1,#]]]&] (* Harvey P. Dale, Dec 24 2012 *)
for(n=1,1000000,if(issquare(n*sigma(n)),print1(n,",")))
isok(n) = issquare(sigma(n)/n); \\ Michel Marcus, Oct 06 2013
a(2)=36 because sum of divisors of 36 =1+2+3+4+6+9+12+18+36=91, which is also a triangular number.
Select[Accumulate[Range[120000]],OddQ[Sqrt[8*DivisorSigma[1,#]+1]]&] (* Harvey P. Dale, Feb 25 2015 *)
isok(n) = ispolygonal(n, 3) && ispolygonal(sigma(n), 3); \\ Michel Marcus, Apr 20 2014
f1[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^(2*e); a[1] = 1; a[n_] := (s = Times @@ f1 @@@ (f = FactorInteger[n])) / GCD[s, Times @@ f2 @@@ f]; Array[a, 60] (* Amiram Eldar, Dec 12 2021 *)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); }; A350072(n) = A349162(n^2);
81 is a term because 81, sigma(81) = 121 and sigma(sigma(81)) = 133 are all odd.
forstep(r=1, 5147241, 2, n=r^2; if(sigma(sigma(n))%2<>0, print1(n ", "))) \\ Donovan Johnson, Nov 09 2013
forstep(r=1, 5147241, 2, if(!isprime(r)&&issquare(sigma(n=r^2)), print1(n", "))) \\ Charles R Greathouse IV, Nov 12 2013
sigma[{3,81,400}]={4,121,961}.
Do[s=DivisorSigma[1, n]; If[PrimeQ[Sqrt[s]], Print[n]], {n, 1, 1000000}] (* Corrected by N. J. A. Sloane, May 26 2008 *)
0' = 0 = 0^2; 1' = 0 = 0^2; 4' = 4 = 2^2; 256' = 1024 = 32^2; 11664' = 46656 = 216^2.
with(numtheory): P:=proc(q) local a,n,p; for n from 0 to q do a:=n^2*add(op(2,p)/op(1,p),p=ifactors(n^2)[2]); if trunc(sqrt(a))*trunc(sqrt(a))=a then print(n^2); fi; od; end: P(10^9);
{0, 1}~Join~Select[Range[2, 10^5]^2, IntegerQ@ Sqrt[# Total[#2/#1 & @@@ FactorInteger[#]]] &] (* Michael De Vlieger, Oct 19 2021 *)
ad(n) = if (n<1, 0, my(f = factor(n)); n*sum(k=1, #f~, f[k,2]/f[k,1])); lista(nn) = {for (n=0, nn, if (issquare(ad(n^2)), print1(n^2, ", ")););} \\ Michel Marcus, Apr 08 2016
Comments