cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A256149 Square numbers n such that sigma(n) is a triangular number.

Original entry on oeis.org

1, 36, 441, 5625, 6084, 407044, 8444836, 17388900, 35070084, 40729924, 57790404, 80138304, 537822481, 588159504, 659821969, 918999225, 1820387556, 2179862721, 2599062361, 5110963081, 28816420516, 36144473689, 46082779561, 55145598561, 147225690000, 163405126756
Offset: 1

Views

Author

Antonio Roldán, Mar 16 2015

Keywords

Comments

This sequence is the intersection of A000290 and A045746.

Examples

			441 is in the sequence because 441 = 21^2 is square number, and sigma(441) = 441 + 147 + 63 + 49 + 21 + 9 + 7 + 3 + 1 = 741 = 38*39/2 is triangular number.
		

Crossrefs

Programs

  • Mathematica
    t = Accumulate[Range@ 10000]; Select[Range[10000]^2, MemberQ[t, DivisorSigma[1, #]] &] (* Michael De Vlieger, Mar 17 2015 *)
    Select[Range[500000]^2,OddQ[Sqrt[8DivisorSigma[1,#]+1]]&] (* Harvey P. Dale, Feb 25 2017 *)
  • PARI
    {for(i=1,10^6,n=i*i;if(ispolygonal(sigma(n), 3),print1(n,", ")))}

A287472 Triangular numbers k such that phi(k) is also a triangular number, where phi(k) is the Euler totient function (A000010).

Original entry on oeis.org

1, 231, 1035, 6786, 190036, 193131, 766941, 1237951, 1348903, 3069003, 3396921, 8034036, 9152781, 11875501, 15694003, 28001386, 29587278, 35149920, 61643856, 63196903, 130758706, 178161126, 198214005, 227751153, 268111746, 339210081, 402102261, 654224878
Offset: 1

Views

Author

Amiram Eldar, May 25 2017

Keywords

Comments

The indices of these triangular numbers are: 1, 21, 45, 116, 616, 621, 1238, 1573, 1642, 2477, 2606, 4008, 4278, 4873, 5602, 7483, 7692, 8384, 11103, 11242, 16171, 18876, 19910, 21342, 23156, 26046, 28358, 36172, 46196, 46621, 67572, 72816, ...
The indices of the triangular phi values are: 1, 15, 32, 63, 384, 495, 927, 1440, 1599, 1856, 2015, 2240, 3200, 4640, 5375, 4895, 4095, 4095, 6400, 9855, 10880, 9855, 13824, 16128, 12095, 19520, 21504, 25344, 25983, 45584, 37184, 40959, ...

Examples

			231 = 21*22/2 is triangular, phi(231)=120=15*16/2 is also triangular, thus 231 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    triQ[n_] := IntegerQ@Sqrt[8n+1]; Select[Accumulate[Range[1000]], triQ[EulerPhi[#]]&]
  • PARI
    isok(n) = ispolygonal(n, 3) && ispolygonal(eulerphi(n), 3); \\ Michel Marcus, May 25 2017

A226363 Oblong numbers (A002378) whose sum of divisors is also an oblong number.

Original entry on oeis.org

6, 20, 30, 306, 1722, 2862, 11772, 13572, 28730, 29756, 40602, 54056, 219492, 351056, 463080, 947702, 1391220, 1546292, 2043470, 7174362, 7703400, 11400752, 15104882, 19127502, 20155610, 113667582, 172173762, 314299712, 475654290, 555238532, 558447792, 562519806
Offset: 1

Views

Author

Alex Ratushnyak, Jun 05 2013

Keywords

Crossrefs

Programs

  • Mathematica
    oblongQ[n_] := IntegerQ[(-1 + Sqrt[1 + 4*n])/2]; s = Select[Range[24000], oblongQ[DivisorSigma[1, # (# + 1)]] &]; s * (s + 1) (* T. D. Noe, Jun 12 2013 *)

A259240 Least n-gonal number greater than 1 such that sigma(n) is also n-gonal.

Original entry on oeis.org

36, 81, 590, 5286126, 15880, 1932821, 37990539325, 6280, 234222782808, 3350529, 931738, 455621651099, 3312, 2680, 373569353, 1128231876, 47531850550, 601657, 4609261, 115668, 164642040082433296, 336577944, 40161257476, 5031720, 31424211, 25785, 12670237746
Offset: 3

Views

Author

Michel Marcus, Jun 22 2015

Keywords

Examples

			For n=4, 81 is a square and sigma(81)=121 is also a square.
		

Crossrefs

Programs

  • PARI
    a(n) = {k = 2; while(! ((p = k*((n-2)*k-(n-4))/2) && ispolygonal(sigma(p), n)), k++); k;}

Extensions

a(23)-a(29) from Hiroaki Yamanouchi, Sep 26 2015

A292063 Triangular numbers n such that psi(n) is also a triangular number, where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 780, 2775, 5050, 474825, 681528, 1727011, 5286126, 5911641, 6604795, 17325441, 21612025, 27799696, 45025305, 386767578, 1538599128, 2086160121, 3679490220, 5718242211, 7092226351, 8019794628, 16505718895, 36604197735, 55541611986, 56693041356, 89369984476
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2017

Keywords

Comments

The indices of these triangular numbers are 1, 39, 74, 100, 974, 1167, 1858, 3251, 3438, 3634, 5886, 6574, 7456, 9489, ...
The indices of the triangular psi values are 1, 63, 95, 135, 1280, 1664, 2015, 4607, 4095, 4095, 7424, 7424, 9152, 12543, ...

Examples

			780 is in the sequence since 780 = 39*40/2 is triangular and psi(780) = 2016 = 63*64/2 is also triangular.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n<1, 0, n*Sum[MoebiusMu[d]^2/d, {d, Divisors @ n}]]; triQ[n_] := IntegerQ@ Sqrt[8n+1]; Select[Accumulate[Range[1000]], triQ[psi[#]]&]

Extensions

a(18)-a(26) from Giovanni Resta, Sep 11 2017

A317478 Triangular numbers whose sum of divisors is an oblong number.

Original entry on oeis.org

6, 28, 55, 496, 666, 780, 1540, 2145, 6441, 6903, 8128, 15051, 21736, 36585, 44551, 232903, 234955, 644680, 2258875, 3186550, 3462396, 6211050, 22174470, 33550336, 48437403, 62591266, 107538445, 134898525, 153554050, 624157446, 1309312378, 1339937028
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2018

Keywords

Comments

Includes all the even perfect numbers.
The indices of these triangular numbers are 3, 7, 10, 31, 36, 39, 55, 65, 113, 117, 127, 173, 208, 270, 298, 682, 685, 1135, 2125, 2524, 2631, 3524, 6659, 8191, 9842, 11188, 14665, 16425, 17524, 35331, 51172, 51767, 52019, 52486, 58993, 65585, 97532.
The indices of the corresponding oblong numbers are 3, 7, 8, 31, 38, 48, 63, 63, 95, 104, 127, 144, 224, 255, 224, 512, 575, 1215, 1728, 2448, 3072, 3968, 7695, 8191, 9215, 9792, 12159, 15872, 17576, 37296, 46656, 58239, 63855, 40959, 46080, 62720, 102960.
Number of terms < 10^k, k=1,2,3...: 1, 3, 6, 11, 15, 18, 22, 26, 30, 40, 52, 64, 80, 90, 110, 128, ..., . - Robert G. Wilson v, Jul 31 2018

Examples

			55 is in the sequence since sigma(55) = 72 = 8 * 9 is an oblong number.
		

Crossrefs

Intersection of A000217 and A236387. - Michel Marcus, Jul 30 2018

Programs

  • Mathematica
    tri[n_] := n(n+1)/2; aQ[n_] := IntegerQ[Sqrt[4 * DivisorSigma[1, tri[n]] + 1]]; tri[Select[Range[52000], aQ]]
    Module[{nn=60000,obno},obno=Table[n(n+1),{n,nn}];Select[Accumulate[Range[nn]],MemberQ[ obno,DivisorSigma[1,#]]&]] (* Harvey P. Dale, Aug 26 2024 *)
Showing 1-6 of 6 results.