A008848 Squares whose sum of divisors is a square.
1, 81, 400, 32400, 1705636, 3648100, 138156516, 295496100, 1055340196, 1476326929, 2263475776, 2323432804, 2592846400, 2661528100, 7036525456, 10994571025, 17604513124, 39415749156, 61436066769, 85482555876, 90526367376, 97577515876, 98551417041
Offset: 1
Keywords
Examples
n=81: sigma(81) = 1+3+9+27+81 = 121 = 11^2. n=400: sigma(400) = sigma(16)*sigma(25) = 31*31 = 961. n=32400 (= 81*400): sigma(32400) = 116281 = 341^2 = 121*961.
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 10.
- I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..400
Crossrefs
Programs
-
Mathematica
Do[s=DivisorSigma[1, n^2]; If[IntegerQ[Sqrt[s]]&&Mod[s, 2]==1, Print[n^2]], {n, 1, 10000000}] (* Labos Elemer *) Select[Range[320000]^2,IntegerQ[Sqrt[DivisorSigma[1,#]]]&] (* Harvey P. Dale, Feb 22 2015 *)
-
PARI
for(n=1,1e6,if(issquare(sigma(n^2)), print1(n^2", "))) \\ Charles R Greathouse IV, May 10 2011
Formula
a(n) = A008847(n)^2.
Comments