cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A163763 Sqrt(sigma(A008847(n)^2)), where A008847 lists m such that sigma(m^2) is a square.

Original entry on oeis.org

1, 11, 31, 341, 1729, 2821, 19019, 31031, 43617, 43491, 68961, 72219, 82677, 86583, 117831, 117831, 187131, 347529, 347529, 479787, 503347, 414309, 436107, 496713, 478401, 503347, 758571, 794409, 909447, 952413, 658749, 696787, 696787
Offset: 1

Views

Author

M. F. Hasler, Aug 03 2009

Keywords

Comments

Note that a(k)=a(k+1) for k=15, 18, 32, 90, 231,... - Zak Seidov, May 02 2016

Crossrefs

Cf. A163764.

Programs

  • Mathematica
    Select[Sqrt@ DivisorSigma[1, #^2] &@ Range[10^6], IntegerQ] (* Michael De Vlieger, May 02 2016, after Harvey P. Dale at A008847 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (issquare(s = sigma(n^2)), print1(sqrtint(s), ", ")););} \\ Michel Marcus, May 02 2016

A008848 Squares whose sum of divisors is a square.

Original entry on oeis.org

1, 81, 400, 32400, 1705636, 3648100, 138156516, 295496100, 1055340196, 1476326929, 2263475776, 2323432804, 2592846400, 2661528100, 7036525456, 10994571025, 17604513124, 39415749156, 61436066769, 85482555876, 90526367376, 97577515876, 98551417041
Offset: 1

Views

Author

Keywords

Comments

Solutions to sigma(x^2) = (2k+1)^2. - Labos Elemer, Aug 22 2002
Intersection of A006532 and A000290. The product of any two coprime terms is also in this sequence. - Charles R Greathouse IV, May 10 2011
Also intersection of A069070 and A000290. - Michel Marcus, Oct 06 2013
Conjectures: (1) a(2) = 81 is the only prime power (A246655) in this sequence. (2) 81 and 400 are only terms x for which sigma(x) is in A246655. (3) x = 1 is the only such term that sigma(x) is also a term. See also comments in A074386, A336547 and A350072. - Antti Karttunen, Jul 03 2023, (2) corrected in May 11 2024

Examples

			n=81: sigma(81) = 1+3+9+27+81 = 121 = 11^2.
n=400: sigma(400) = sigma(16)*sigma(25) = 31*31 = 961.
n=32400 (= 81*400): sigma(32400) = 116281 = 341^2 = 121*961.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 10.
  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

Crossrefs

Terms of A008847 squared.
Subsequence of A000290, of A006532, and of A069070.

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n^2]; If[IntegerQ[Sqrt[s]]&&Mod[s, 2]==1, Print[n^2]], {n, 1, 10000000}] (* Labos Elemer *)
    Select[Range[320000]^2,IntegerQ[Sqrt[DivisorSigma[1,#]]]&] (* Harvey P. Dale, Feb 22 2015 *)
  • PARI
    for(n=1,1e6,if(issquare(sigma(n^2)), print1(n^2", "))) \\ Charles R Greathouse IV, May 10 2011

Formula

a(n) = A008847(n)^2.

A097023 Numbers k such that the sum of the divisors of 2*k^2 is a square.

Original entry on oeis.org

313, 335, 2612, 2817, 3015, 3820, 23508, 34380, 36647, 38193, 42217, 50281, 64972, 73535, 96404, 103180, 155991, 265364, 325847, 329823, 379953, 397068, 452529, 476545, 584748, 624748, 661815, 668660, 867636, 928620
Offset: 1

Views

Author

Labos Elemer, Aug 24 2004

Keywords

Examples

			sigma(2*313^2) = 543^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[950000],IntegerQ[Sqrt[DivisorSigma[1,2#^2]]]&] (* Harvey P. Dale, Jul 10 2012 *)

Formula

a(n) = sqrt(A074388(n)/2). - Amiram Eldar, Aug 13 2024

Extensions

Definition clarified by Harvey P. Dale, Jul 10 2012

A234641 Odd numbers n such that sigma(sigma(n^2)) is odd.

Original entry on oeis.org

1, 9, 38423, 104855, 247863, 313929, 345807, 376095, 469623, 623615, 787127, 943695, 985369, 1606281, 1754039, 1933815, 2034423, 2181409, 3043401, 5147241, 5545617, 5612535, 6385703, 7084143, 8868321, 10606679, 11470511, 11954409, 12276745, 12794655, 13213921, 14142695, 15512065, 15737953, 15786351, 16844135
Offset: 1

Views

Author

M. F. Hasler, Dec 28 2013

Keywords

Comments

The sum of divisors of a square is always odd, therefore these numbers have the property that x=n^2, y=sigma(x) and z=sigma(y) are all three odd.
This is the subsequence of odd terms of A008847.

Crossrefs

A163764 a(n) = sqrt(sigma(2*m^2)), where m = A097023(n), i.e., sigma(2*m^2) is a square.

Original entry on oeis.org

543, 651, 5187, 5973, 7161, 8463, 57057, 93093, 66063, 81003, 80199, 98553, 130851, 160797, 216657, 259749, 347529, 561393, 565383, 726693, 882189, 1042587, 1084083, 922467, 1439361, 1242927, 1768767, 1490139, 2383227, 2857239, 2029143, 2486169, 4517877, 6175323
Offset: 1

Views

Author

M. F. Hasler, Aug 03 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Sqrt[DivisorSigma[1, 2 n^2]], {n, 100000}], IntegerQ[#] &] (* Tanya Khovanova, Jun 18 2021 *)

Extensions

a(31)-a(34) from Amiram Eldar, Aug 13 2024

A063900 Numbers k such that sum of proper divisors or aliquot parts of k^2 (excluding 1) is a square, or A048050(k^2) is a square.

Original entry on oeis.org

866, 9271, 18167, 30887, 39959, 114607, 119279, 129911, 153631, 239111, 343207, 517591, 582583, 602159, 607340, 1202282, 1397863, 1729999, 1920647, 2533183, 2547119, 2558183, 5740127, 7122959, 9379871, 10218407, 10891103, 13549399
Offset: 1

Views

Author

Jason Earls, Aug 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    chowla[n_] := DivisorSigma[1, n] - n - 1; aQ[n_] := IntegerQ@Sqrt@chowla[n^2]; Select[Range[10^6], aQ] (* Amiram Eldar, Aug 30 2019 *)
  • PARI
    s(n)=sigma(n)-n-1;
    for(n=1,10^8, if(issquare(s(n^2)),print(n)))
    
  • PARI
    s(n)=sigma(n) - n - 1
    { n=0; for (m=1, 10^9, if(issquare(s(m^2)), write("b063900.txt", n++, " ", m); if (n==55, break)) ) } \\ Harry J. Smith, Sep 02 2009

Extensions

a(19)-a(28) from Harry J. Smith, Sep 02 2009

A064498 Numbers k such that the sum of unitary divisors of k^2 is a square.

Original entry on oeis.org

1, 42, 120, 156, 246, 287, 1434, 1673, 2016, 5256, 9799, 11808, 18330, 19740, 21385, 34440, 39990, 44772, 45990, 46655, 57270, 60156, 66815, 68832, 102648, 115620, 125255, 149472, 156570, 170820, 182665, 195510, 200760, 208182, 223944, 224196
Offset: 1

Views

Author

Jason Earls, Oct 05 2001

Keywords

Crossrefs

Cf. A034448 (usigma), A008847 (similar, with sigma).

Programs

  • Mathematica
    sudsQ[n_]:=Module[{uds=Sort[Flatten[Outer[Times,Sequence@@({1,#}&/@ Power@@@FactorInteger[n^2])]]]},IntegerQ[Sqrt[Total[uds]]]]; Join[{1}, Select[Range[230000],sudsQ]] (* Harvey P. Dale, Dec 09 2011 *)
  • PARI
    {usigma(n, s=1, fac, i)= fac=factor(n); for(i=1,matsize(fac)[1], s=s*(1+fac[i,1]^fac[i,2]); ); return(s); }
    for(n=1,10^6, if(issquare(usigma(n^2)),print1(n," ")))
    
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    { n=0; for (m=1, 10^9, if (issquare(usigma(m^2)), write("b064498.txt", n++, " ", m); if (n==100, break)) ) } \\ Harry J. Smith, Sep 16 2009

A097025 Numbers n such that both sigma(n) and sigma(sigma(n)) are odd numbers.

Original entry on oeis.org

1, 81, 400, 32400, 195938, 224450, 1705636, 3648100, 13645088, 15870978, 18180450, 29184800, 138156516, 295496100, 1055340196, 1105252128, 1476326929, 2263475776, 2323432804, 2363968800, 2592846400, 2661528100, 2686005218, 2917410498, 3564550178
Offset: 1

Views

Author

Labos Elemer, Aug 24 2004

Keywords

Comments

Only members of A028982 are candidates. - Robert G. Wilson v, Aug 27 2004
Question: iterating sigma()=A000203, how many iterates can be odd numbers?

Examples

			n = 1910^2, sigma(n) = 2821^2, sigma(sigma(n)) = 10357983.
		

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[{n^2, 2n^2}, {n, 36650}]]]; a = {}; Do[ If[ OddQ[ DivisorSigma[1, DivisorSigma[1, t[[n]] ]]], AppendTo[a, t[[n]] ]], {n, 2*10^6}]; a (* Robert G. Wilson v, Aug 27 2004 *)

Extensions

Edited and extended by Robert G. Wilson v, Aug 27 2004

A232445 Numbers n such that sigma(n) and sigma(n^2) are squares.

Original entry on oeis.org

1, 11177320, 182937066, 159839399818, 166474679436
Offset: 1

Views

Author

Alex Ratushnyak, Nov 24 2013

Keywords

Comments

Intersection of A006532 and A008847.
sigma(a(6)) >= 10^12. - Hiroaki Yamanouchi, Sep 26 2014

Examples

			sigma(a(2)) = (64*9*5*2)^2 and sigma(a(2)^2) = (3*7*13*19*31*127)^2.
sigma(a(3)) = (64*9*5*7)^2 and sigma(a(3)^2) = (3*7*13*37*61*499)^2.
sigma(a(4)) = (256*9*5*47)^2 and sigma(a(4)^2) = (3*49*13*19*37*43*61*67)^2.
sigma(a(5)) = (16*3*7*121*17)^2 and sigma(a(5)^2) = (3*49*13*31*61*109*757)^2.
		

Crossrefs

Cf. A000203 (sigma: sum of divisors of n), A006532, A008847, A232444.

Programs

  • PARI
    isok(n) = issquare(sigma(n)) && issquare(sigma(n^2)); \\ Michel Marcus, Sep 24 2014

Extensions

a(4) from Hiroaki Yamanouchi, Sep 24 2014
a(5) from Hiroaki Yamanouchi, Sep 26 2014

A063893 Numbers k such that the sum of proper divisors or aliquot parts of k^2 is a square.

Original entry on oeis.org

1, 3, 49, 35713, 102851, 949818597, 1070640001, 74145779101, 138452510557, 158236686397, 640606652893, 2814821518321, 9081196437853, 36236716613821, 97748813502577, 185178952282141, 433755354387133
Offset: 1

Views

Author

Jason Earls, Aug 29 2001

Keywords

Comments

Numbers 640606652893, 2814821518321, 9081196437853, 36236716613821 and 97748813502577 are also terms. - Donovan Johnson, Mar 31 2012
747834604942753, 1543596825805057, 2356096433066461, 6853335405451201 and 7704992936528497 are also terms. - Martin Ehrenstein, Jul 30 2023

Examples

			49 is a term because 49^2 = 2401 and sum of aliquot divisors of 2401: 1+7+49+343 = 400 = 20^2.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 10.

Crossrefs

Programs

  • PARI
    s(n)=sigma(n)-n;
    for(n=1,10^8, if(issquare(s(n^2)), print1(n, ", ")))

Extensions

a(6) from Naohiro Nomoto, Jun 06 2002
a(7) from Giovanni Resta, Jan 31 2012
a(8)-a(10) from Donovan Johnson, Mar 15 2012
a(11)-a(17) from Martin Ehrenstein, Jul 30 2023
Showing 1-10 of 10 results.