cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008847 Numbers k such that sum of divisors of k^2 is a square.

Original entry on oeis.org

1, 9, 20, 180, 1306, 1910, 11754, 17190, 32486, 38423, 47576, 48202, 50920, 51590, 83884, 104855, 132682, 198534, 247863, 292374, 300876, 312374, 313929, 334330, 345807, 376095, 428184, 433818, 458280, 464310, 469623, 498892, 623615, 754956, 768460, 787127, 943695, 985369
Offset: 1

Views

Author

Keywords

Comments

These are the square roots of squares in A006532. - M. F. Hasler, Oct 23 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 10.
  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

Crossrefs

Programs

  • Haskell
    a008847 n = a008847_list !! (n-1)
    a008847_list = filter ((== 1) . a010052 . a000203 . a000290) [1..]
    -- Reinhard Zumkeller, Mar 27 2013
  • Maple
    with(numtheory): readlib(issqr): for i from 1 to 10^5 do if issqr(sigma(i^2)) then print(i); fi; od;
  • Mathematica
    s = {}; Do[ If[IntegerQ[ Sqrt[ DivisorSigma[1, n^2]]], Print[n]; AppendTo[s, n]], {n, 10^6}]; s (* Jean-François Alcover, May 05 2011 *)
    Select[Range[1000000],IntegerQ[Sqrt[DivisorSigma[1,#^2]]]&] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    is_A008847(n)=issquare(sigma(n^2)) \\ M. F. Hasler, Oct 23 2010
    

Formula

A163763(n) = sqrt(sigma(A008847(n)^2)). - M. F. Hasler, Oct 16 2010
a(n) = sqrt(A008848(n)). - Zak Seidov, May 01 2016

A234641 Odd numbers n such that sigma(sigma(n^2)) is odd.

Original entry on oeis.org

1, 9, 38423, 104855, 247863, 313929, 345807, 376095, 469623, 623615, 787127, 943695, 985369, 1606281, 1754039, 1933815, 2034423, 2181409, 3043401, 5147241, 5545617, 5612535, 6385703, 7084143, 8868321, 10606679, 11470511, 11954409, 12276745, 12794655, 13213921, 14142695, 15512065, 15737953, 15786351, 16844135
Offset: 1

Views

Author

M. F. Hasler, Dec 28 2013

Keywords

Comments

The sum of divisors of a square is always odd, therefore these numbers have the property that x=n^2, y=sigma(x) and z=sigma(y) are all three odd.
This is the subsequence of odd terms of A008847.

Crossrefs

A163764 a(n) = sqrt(sigma(2*m^2)), where m = A097023(n), i.e., sigma(2*m^2) is a square.

Original entry on oeis.org

543, 651, 5187, 5973, 7161, 8463, 57057, 93093, 66063, 81003, 80199, 98553, 130851, 160797, 216657, 259749, 347529, 561393, 565383, 726693, 882189, 1042587, 1084083, 922467, 1439361, 1242927, 1768767, 1490139, 2383227, 2857239, 2029143, 2486169, 4517877, 6175323
Offset: 1

Views

Author

M. F. Hasler, Aug 03 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Sqrt[DivisorSigma[1, 2 n^2]], {n, 100000}], IntegerQ[#] &] (* Tanya Khovanova, Jun 18 2021 *)

Extensions

a(31)-a(34) from Amiram Eldar, Aug 13 2024
Showing 1-3 of 3 results.