cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A006532 Numbers whose sum of divisors is a square.

Original entry on oeis.org

1, 3, 22, 66, 70, 81, 94, 115, 119, 170, 210, 214, 217, 265, 282, 310, 322, 343, 345, 357, 364, 382, 385, 400, 472, 497, 510, 517, 527, 642, 651, 679, 710, 742, 745, 782, 795, 820, 862, 884, 889, 930, 935, 966, 970, 1004, 1029, 1066, 1080, 1092, 1146
Offset: 1

Views

Author

Keywords

Comments

If a and b are in the sequence and relatively prime, then a*b is also in the sequence. - Franklin T. Adams-Watters, Jan 12 2009
Apart from a(2), all terms are composite. Bunyakovsky's conjecture implies that this sequence is infinite, since then (e.g.) there are infinitely many primes of the form p = 3k^2 - 1, whence sigma(2p) = 3p + 3 = 9k^2. - Charles R Greathouse IV, May 12 2011
See the Beukers, Luca and Oort link for a proof that the sequence is infinite. - Robert Israel, Oct 15 2017

Examples

			3 is in the sequence because its divisors are 1 and 3, which add up to 4 = 2^2.
22 is in the sequence because its divisors are 1, 2, 11, 22, which add up to 36 = 6^2.
32 is not in the sequence, because its divisors, 1, 2, 4, 8, 16, 32, add up to 63, which is one short of 8^2.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 8.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 94, p. 33, Ellipses, Paris 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Abraham Verghese, Cutting for Stone: A Novel. New York: Alfred A. Knopf, 2009, p.361, p. 528 large-print edition.
  • David Wells, Curious and interesting numbers, Penguin Books, p. 111.

Crossrefs

Programs

  • Haskell
    a006532 n = a006532_list !! (n-1)
    a006532_list = filter ((== 1) . a010052 . a000203) [1..]
    -- Reinhard Zumkeller, Jun 09 2013
    
  • Magma
    [n: n in [1..2000] | IsSquare(&+(Divisors(n)))]; // Vincenzo Librandi, May 31 2015
  • Maple
    for i from 1 to 1000 do if issqr(sigma(i)) then print(i); fi; od;
  • Mathematica
    Select[ Range[ 1150 ], IntegerQ[ Sqrt[ DivisorSigma[ 1, # ] ] ]& ]
  • PARI
    is(n)=issquare(sigma(n)) \\ Charles R Greathouse IV, Jun 05 2013
    
  • Sage
    [n for n in (1..1000) if sigma(n).is_square()] # Giuseppe Coppoletta, Dec 16 2014
    

Formula

A010052(A000203(a(n))) = 1. - Reinhard Zumkeller, Jun 09 2013

Extensions

a(42)-a(51) from Enoch Haga, circa 1999

A048251 a(n) is the smallest number whose sum of divisors is 6^n.

Original entry on oeis.org

1, 5, 22, 102, 510, 3210, 17490, 112890, 600270, 3466470, 20205570, 118879530, 697118730, 3949737330, 24217298490, 143487592710, 841422307110, 4973562896610, 29520886859310, 180254162529210, 1052751138726210, 6301225298627490, 37854941354933010, 224270177470178070
Offset: 0

Views

Author

Keywords

Comments

Terms of this sequence are products of distinct terms in A005105. - Ray Chandler, Sep 01 2010

Examples

			sigma(k) = 1296 = 6^4 for each k in {510, 642, 710, 742, 782, 795, 862, 935, 1177, 1207, 1219}; the smallest of these is a(4)=510.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k=1); while (sigma(k) != 6^n, k++); k;} \\ Michel Marcus, May 14 2018

Formula

a(n) = Min{k : A000203(k) = 6^n}.

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
a(15)-a(24) from Walter Kehowski, Aug 22 2010
Edited and extended by Ray Chandler, Sep 01 2010
Error in sequence corrected by N. J. A. Sloane, Oct 04 2010

A019423 Numbers whose sum of divisors is a fifth power.

Original entry on oeis.org

1, 21, 31, 651, 889, 3210, 3498, 3710, 3882, 3910, 4310, 4922, 4982, 5182, 5457, 5885, 6035, 6095, 6307, 6797, 7117, 7327, 7597, 24573, 27559, 71193, 82110, 90510, 94981, 97410, 98671, 99301, 99510, 100110, 103362, 104622, 107778, 108438, 108822
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n:n in [1..10000]| IsPower(SumOfDivisors(n),5)]; // Marius A. Burtea, Apr 17 2019
  • PARI
    lista(nn) = {for (i=1, nn, s = sigma(i); if (s == 1 || ispower(s, 5), print1(i, ", ")););} \\ Michel Marcus, Jun 12 2013
    

A048699 Nonprime numbers whose sum of aliquot divisors (A001065) is a perfect square.

Original entry on oeis.org

1, 9, 12, 15, 24, 26, 56, 75, 76, 90, 95, 119, 122, 124, 140, 143, 147, 153, 176, 194, 215, 243, 287, 332, 363, 386, 407, 477, 495, 507, 511, 524, 527, 536, 551, 575, 688, 738, 791, 794, 815, 867, 871, 892, 924, 935, 963, 992, 1075, 1083, 1159, 1196, 1199, 1295, 1304
Offset: 1

Views

Author

Keywords

Comments

The sum of aliquot divisors of prime numbers is 1.
If a^2 is an odd square for which a^2-1 = p + q with p,q primes, then p*q is a term. If m = 2^k-1 is a Mersenne prime then m*(2^k) (twice an even perfect number) is a term. If b = 2^j is a square and b-7 = 3s is a semiprime then 4s is a term. - Metin Sariyar, Apr 02 2020

Examples

			a(3)=15; aliquot divisors are 1,3,5; sum of aliquot divisors = 9 and 3^2=9.
		

Crossrefs

Cf. A001065, A006532, A020477, A048698, A073040 (includes primes).

Programs

  • Maple
    a := []; for n from 1 to 2000 do if sigma(n) <> n+1 and issqr(sigma(n)-n) then a := [op(a), n]; fi; od: a;
  • Mathematica
    nn=1400;Select[Complement[Range[nn],Prime[Range[PrimePi[nn]]]],IntegerQ[ Sqrt[DivisorSigma[1,#]-#]]&] (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    isok(k) = !ispseudoprime(k) && issquare(sigma(k) - k); \\ Michel Marcus, May 13 2025

A019424 Numbers whose sum of divisors is a sixth power.

Original entry on oeis.org

1, 2667, 3937, 17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117, 172011, 253921, 640737
Offset: 1

Views

Author

Keywords

Examples

			sigma(2667) = 1+3+7+21+127+381+889+2667 = 4096 = 4^6.
sigma(3937) = 1+31+127+3937 = 4096 = 4^6.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..100000]| IsPower(SumOfDivisors(n),6)]; // Marius A. Burtea, Apr 17 2019
  • Mathematica
    Select[Range[700000],IntegerQ[Surd[DivisorSigma[1,#],6]]&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    c=0; for(n=1, 306455560, if(ispower(sigma(n), 6), c++; write("b019424.txt", c " " n))) /* Donovan Johnson, Jun 13 2013 */
    

A048256 Numbers whose sum of divisors is 6^6 = 46656.

Original entry on oeis.org

17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117
Offset: 1

Views

Author

Keywords

Comments

Sequence has A048253(6)=30 terms from A048251(6)=17490 to A048252(6)=46117. - Ray Chandler, Sep 01 2010

Examples

			The divisors of 19410 are 1, 2, 3, 5, 6, 10, 15, 30, 647, 1294, 1941, 3235, 3882, 6470, 9705, and 19410; their sum is 46656, so 19410 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6^6], DivisorSigma[1, # ] == 6^6 &] (* Ray Chandler, Sep 01 2010 *)

A048257 Integers whose sum of divisors is a 7th power.

Original entry on oeis.org

1, 93, 127, 11811, 112890, 120054, 124338, 127330, 132770, 133998, 134090, 137058, 138754, 139962, 146710, 148665, 148810, 149534, 153986, 155510, 160215, 161194, 164985, 167134, 170986, 173098, 183687, 184682, 187143, 191913, 198485, 206823, 206965, 207687
Offset: 1

Views

Author

Keywords

Comments

If m and n are coprime members of the sequence, then m*n is also a member. - Robert Israel, May 10 2018

Examples

			Divisors(11811) = {1,3,31,93,127,381,3937,11811} and sigma(11811) = 16384 = 4^7.
		

Crossrefs

Programs

  • Maple
    filter:= n -> type(map(t -> t[2]/7, ifactors(numtheory:-sigma(n))[2]),list(integer)):
    select(filter, [$1..21*10^4]); # Robert Israel, May 09 2018
  • Mathematica
    Select[Range[210000],IntegerQ[Surd[DivisorSigma[1,#],7]]&] (* Harvey P. Dale, Jun 09 2017 *)
  • PARI
    isok(n) = ispower(sigma(n), 7); \\ Michel Marcus, Dec 20 2013

Formula

sigma(a(n)) = x^7, where the initial values of x are 1, 2, 4, 6 (48 times), ...

A048258 Integers whose sum of divisors is an 8th power.

Original entry on oeis.org

1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1

Views

Author

Keywords

Examples

			Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
		

Crossrefs

Programs

Formula

Sigma(1, a(n)) = x^8, where the initial values of x are 1, 2, 4, 6 (occurs 85 times), ...

A303993 Numbers whose sum of divisors is the cube of one of their divisors.

Original entry on oeis.org

1, 102, 8148, 63720, 66120, 71880, 196896, 446040, 452760, 462840, 471960, 503160, 517320, 544920, 549240, 554280, 559320, 575880, 756400, 1458912, 1499232, 1579872, 1634040, 1659960, 1748520, 5294800, 9740640, 10103520, 11103456, 11438280, 11583264, 11619720, 11915640
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A020477.

Examples

			Divisors of 102 are 1, 2, 3, 6, 17, 34, 51, 102 and their sum is 216 = 6^3.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^3 then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Select[Range[10^6], Mod[#, DivisorSigma[1, #]^(1/3)] == 0 &] (* Michael De Vlieger, May 06 2018 *)
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 3) && !(n % sqrtnint(s, 3))); \\ Michel Marcus, May 05 2018

A048252 Largest number whose sum of divisors is 6^n.

Original entry on oeis.org

1, 5, 22, 187, 1219, 7597, 46117, 278857, 1676377, 10067797, 60450517, 362758177, 2176626817, 13060193977, 78363525817, 470183516857, 2820894903487, 16926601754197, 101559860054047, 609359671998037, 3656158318966357
Offset: 0

Views

Author

Keywords

Comments

Terms of this sequence are products of distinct terms in A005105. - Ray Chandler, Sep 01 2010

Crossrefs

Programs

  • PARI
    a(n) = {sn = 6^n; forstep(x=sn, 1, -1, if (sigma(x) == sn, return (x)););} \\ Michel Marcus, Dec 15 2013

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
a(15)-a(20) from Donovan Johnson, Nov 22 2008
Edited and extended by Ray Chandler, Sep 01 2010
Showing 1-10 of 24 results. Next