A019423
Numbers whose sum of divisors is a fifth power.
Original entry on oeis.org
1, 21, 31, 651, 889, 3210, 3498, 3710, 3882, 3910, 4310, 4922, 4982, 5182, 5457, 5885, 6035, 6095, 6307, 6797, 7117, 7327, 7597, 24573, 27559, 71193, 82110, 90510, 94981, 97410, 98671, 99301, 99510, 100110, 103362, 104622, 107778, 108438, 108822
Offset: 1
- Marius A. Burtea, Table of n, a(n) for n = 1..3648 (terms 1..1000 from Donovan Johnson; a(1211) re-indexed and duplicate a(2311) removed by _Georg Fischer_, Mar 21 2022).
- Frits Beukers, Florian Luca and Frans Oort, Power Values of Divisor Sums, The American Mathematical Monthly, Vol. 119, No. 5 (May 2012), pp. 373-380.
-
[n:n in [1..10000]| IsPower(SumOfDivisors(n),5)]; // Marius A. Burtea, Apr 17 2019
-
lista(nn) = {for (i=1, nn, s = sigma(i); if (s == 1 || ispower(s, 5), print1(i, ", ")););} \\ Michel Marcus, Jun 12 2013
A048257
Integers whose sum of divisors is a 7th power.
Original entry on oeis.org
1, 93, 127, 11811, 112890, 120054, 124338, 127330, 132770, 133998, 134090, 137058, 138754, 139962, 146710, 148665, 148810, 149534, 153986, 155510, 160215, 161194, 164985, 167134, 170986, 173098, 183687, 184682, 187143, 191913, 198485, 206823, 206965, 207687
Offset: 1
Divisors(11811) = {1,3,31,93,127,381,3937,11811} and sigma(11811) = 16384 = 4^7.
-
filter:= n -> type(map(t -> t[2]/7, ifactors(numtheory:-sigma(n))[2]),list(integer)):
select(filter, [$1..21*10^4]); # Robert Israel, May 09 2018
-
Select[Range[210000],IntegerQ[Surd[DivisorSigma[1,#],7]]&] (* Harvey P. Dale, Jun 09 2017 *)
-
isok(n) = ispower(sigma(n), 7); \\ Michel Marcus, Dec 20 2013
A048258
Integers whose sum of divisors is an 8th power.
Original entry on oeis.org
1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1
Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
A303996
Numbers whose sum of divisors is the sixth power of one of their divisors.
Original entry on oeis.org
1, 17490, 19410, 22578, 2823492, 162523452, 165982908, 216731788, 221416468, 221940628, 226768440, 230365560, 232815480, 234896520, 238942920, 240737160, 241362120, 242067720, 242454120, 242655720, 258182910, 264254670, 268298190, 272819070, 277297710, 286008510
Offset: 1
Divisors of 17490 are 1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 53, 55, 66, 106, 110, 159, 165, 265, 318, 330, 530, 583, 795, 1166, 1590, 1749, 2915, 3498, 5830, 8745, 17490 and their sum is 46656 = 6^6.
-
with(numtheory): P:=proc(q) local a,k,n;
for n from 1 to q do a:=sort([op(divisors(n))]);
for k from 1 to nops(a) do if sigma(n)=a[k]^6 then print(n); break; fi; od; od; end: P(10^9);
-
isok(n) = (n==1) || (ispower(s=sigma(n), 6) && !(n % sqrtnint(s, 6))); \\ Michel Marcus, May 05 2018
A063869
Least k such that sigma(k)=m^n for some m>1.
Original entry on oeis.org
2, 3, 7, 217, 21, 2667, 93, 217, 381, 651, 2752491, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683
Offset: 1
For n = 11, sigma(a(n)) = sigma(2752491) = sigma(3 * 7 * 131071) = 4^11.
-
d={2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253}; nn=3700; t=Table[Infinity, {nn}]; t[[1]]=2; u={0}; k=1; While[2+d[[k]]<=nn, mer=2^d[[k]]-1; Do[a=u[[i]]+d[[k]]; If[a<=nn, If[u[[i]]==0, t[[a]]=Min[t[[a]], mer], t[[a]]=Min[t[[a]], t[[u[[i]]]]*mer]]], {i, Length[u]}]; u=Union[u, u+d[[k]]]; k++ ]; Do[If[t[[i]]==Infinity, t[[i]]=t[[2i]]], {i, nn}]; t (* T. D. Noe, Oct 13 2006 *)
c[] = 0; c[1] = 2; r = 1; Do[S = If[# > 1, Rest@ Divisors@ #, 0] &[GCD @@ FactorInteger[DivisorSigma[1, i]][[All, -1]]]; If[Length[S] > 0, Map[If[c[#] == 0, Set[c[#], i]] &, S]; If[# > r, r = #] &@ Max@ S], {i, 2^22}]; TakeWhile[Array[c, r], # > 0 &] (* _Michael De Vlieger, May 23 2022 *)
-
a(n) = my(k=2); while (!ispower(sigma(k), n), k++); k; \\ Michel Marcus, May 23 2022
Showing 1-5 of 5 results.
Comments