cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A019423 Numbers whose sum of divisors is a fifth power.

Original entry on oeis.org

1, 21, 31, 651, 889, 3210, 3498, 3710, 3882, 3910, 4310, 4922, 4982, 5182, 5457, 5885, 6035, 6095, 6307, 6797, 7117, 7327, 7597, 24573, 27559, 71193, 82110, 90510, 94981, 97410, 98671, 99301, 99510, 100110, 103362, 104622, 107778, 108438, 108822
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n:n in [1..10000]| IsPower(SumOfDivisors(n),5)]; // Marius A. Burtea, Apr 17 2019
  • PARI
    lista(nn) = {for (i=1, nn, s = sigma(i); if (s == 1 || ispower(s, 5), print1(i, ", ")););} \\ Michel Marcus, Jun 12 2013
    

A048257 Integers whose sum of divisors is a 7th power.

Original entry on oeis.org

1, 93, 127, 11811, 112890, 120054, 124338, 127330, 132770, 133998, 134090, 137058, 138754, 139962, 146710, 148665, 148810, 149534, 153986, 155510, 160215, 161194, 164985, 167134, 170986, 173098, 183687, 184682, 187143, 191913, 198485, 206823, 206965, 207687
Offset: 1

Views

Author

Keywords

Comments

If m and n are coprime members of the sequence, then m*n is also a member. - Robert Israel, May 10 2018

Examples

			Divisors(11811) = {1,3,31,93,127,381,3937,11811} and sigma(11811) = 16384 = 4^7.
		

Crossrefs

Programs

  • Maple
    filter:= n -> type(map(t -> t[2]/7, ifactors(numtheory:-sigma(n))[2]),list(integer)):
    select(filter, [$1..21*10^4]); # Robert Israel, May 09 2018
  • Mathematica
    Select[Range[210000],IntegerQ[Surd[DivisorSigma[1,#],7]]&] (* Harvey P. Dale, Jun 09 2017 *)
  • PARI
    isok(n) = ispower(sigma(n), 7); \\ Michel Marcus, Dec 20 2013

Formula

sigma(a(n)) = x^7, where the initial values of x are 1, 2, 4, 6 (48 times), ...

A048258 Integers whose sum of divisors is an 8th power.

Original entry on oeis.org

1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1

Views

Author

Keywords

Examples

			Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
		

Crossrefs

Programs

Formula

Sigma(1, a(n)) = x^8, where the initial values of x are 1, 2, 4, 6 (occurs 85 times), ...

A303996 Numbers whose sum of divisors is the sixth power of one of their divisors.

Original entry on oeis.org

1, 17490, 19410, 22578, 2823492, 162523452, 165982908, 216731788, 221416468, 221940628, 226768440, 230365560, 232815480, 234896520, 238942920, 240737160, 241362120, 242067720, 242454120, 242655720, 258182910, 264254670, 268298190, 272819070, 277297710, 286008510
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A019424.

Examples

			Divisors of 17490 are 1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 53, 55, 66, 106, 110, 159, 165, 265, 318, 330, 530, 583, 795, 1166, 1590, 1749, 2915, 3498, 5830, 8745, 17490 and their sum is 46656 = 6^6.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^6 then print(n); break; fi; od; od; end: P(10^9);
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 6) && !(n % sqrtnint(s, 6))); \\ Michel Marcus, May 05 2018

A063869 Least k such that sigma(k)=m^n for some m>1.

Original entry on oeis.org

2, 3, 7, 217, 21, 2667, 93, 217, 381, 651, 2752491, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683
Offset: 1

Views

Author

Labos Elemer, Aug 27 2001

Keywords

Comments

For n=2 to 20 sigma(a(n)) = m^n with m=2 or m=4. Computed terms are products of Mersenne primes (A000668). Is this true for larger n? Validity of a(11) was tested individually.
The Nagell-Ljunggren conjecture implies that sigma(x) is never 3^n for n>1. If this is true, then m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006
Sierpiński says that he proved sigma(x) is never 3^r for r>1. Hence m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006

Examples

			For n = 11, sigma(a(n)) = sigma(2752491) = sigma(3 * 7 * 131071) = 4^11.
		

Crossrefs

Programs

Formula

a(n) = Min{x : A000203(x)=m^n} for some m.

Extensions

a(24) corrected by T. D. Noe, Oct 15 2006
Showing 1-5 of 5 results.