cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A019423 Numbers whose sum of divisors is a fifth power.

Original entry on oeis.org

1, 21, 31, 651, 889, 3210, 3498, 3710, 3882, 3910, 4310, 4922, 4982, 5182, 5457, 5885, 6035, 6095, 6307, 6797, 7117, 7327, 7597, 24573, 27559, 71193, 82110, 90510, 94981, 97410, 98671, 99301, 99510, 100110, 103362, 104622, 107778, 108438, 108822
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n:n in [1..10000]| IsPower(SumOfDivisors(n),5)]; // Marius A. Burtea, Apr 17 2019
  • PARI
    lista(nn) = {for (i=1, nn, s = sigma(i); if (s == 1 || ispower(s, 5), print1(i, ", ")););} \\ Michel Marcus, Jun 12 2013
    

A019424 Numbers whose sum of divisors is a sixth power.

Original entry on oeis.org

1, 2667, 3937, 17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117, 172011, 253921, 640737
Offset: 1

Views

Author

Keywords

Examples

			sigma(2667) = 1+3+7+21+127+381+889+2667 = 4096 = 4^6.
sigma(3937) = 1+31+127+3937 = 4096 = 4^6.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..100000]| IsPower(SumOfDivisors(n),6)]; // Marius A. Burtea, Apr 17 2019
  • Mathematica
    Select[Range[700000],IntegerQ[Surd[DivisorSigma[1,#],6]]&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    c=0; for(n=1, 306455560, if(ispower(sigma(n), 6), c++; write("b019424.txt", c " " n))) /* Donovan Johnson, Jun 13 2013 */
    

A048258 Integers whose sum of divisors is an 8th power.

Original entry on oeis.org

1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1

Views

Author

Keywords

Examples

			Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
		

Crossrefs

Programs

Formula

Sigma(1, a(n)) = x^8, where the initial values of x are 1, 2, 4, 6 (occurs 85 times), ...

A063869 Least k such that sigma(k)=m^n for some m>1.

Original entry on oeis.org

2, 3, 7, 217, 21, 2667, 93, 217, 381, 651, 2752491, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683
Offset: 1

Views

Author

Labos Elemer, Aug 27 2001

Keywords

Comments

For n=2 to 20 sigma(a(n)) = m^n with m=2 or m=4. Computed terms are products of Mersenne primes (A000668). Is this true for larger n? Validity of a(11) was tested individually.
The Nagell-Ljunggren conjecture implies that sigma(x) is never 3^n for n>1. If this is true, then m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006
Sierpiński says that he proved sigma(x) is never 3^r for r>1. Hence m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006

Examples

			For n = 11, sigma(a(n)) = sigma(2752491) = sigma(3 * 7 * 131071) = 4^11.
		

Crossrefs

Programs

Formula

a(n) = Min{x : A000203(x)=m^n} for some m.

Extensions

a(24) corrected by T. D. Noe, Oct 15 2006

A303999 Numbers whose sum of divisors is the seventh power of one of their divisors.

Original entry on oeis.org

1, 112890, 120054, 124338, 133998, 137058, 139962, 36705396, 39118548, 52166212, 4661585292, 4677211812, 4851457716, 4968055596, 6168611160, 6232929480, 6236525932, 6261521812, 6311227560, 6362855640, 6430524120, 6468862876, 6488003880, 6500134440, 6506266732
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A048257.

Examples

			Divisors of 112890 are 1, 2, 3, 5, 6, 10, 15, 30, 53, 71, 106, 142, 159, 213, 265, 318, 355, 426, 530, 710, 795, 1065, 1590, 2130, 3763, 7526, 11289, 18815, 22578, 37630, 56445, 112890 and their sum is 279936 = 6^7.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^7 then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Select[Range[150000], IntegerQ[t = DivisorSigma[1, #]^(1/7)] && Mod[#, t] == 0 &] (* Giovanni Resta, May 04 2018 *)
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 7) && !(n % sqrtnint(s, 7))); \\ Michel Marcus, May 05 2018

Extensions

a(11)-a(25) from Giovanni Resta, May 04 2018
Showing 1-5 of 5 results.