A019423
Numbers whose sum of divisors is a fifth power.
Original entry on oeis.org
1, 21, 31, 651, 889, 3210, 3498, 3710, 3882, 3910, 4310, 4922, 4982, 5182, 5457, 5885, 6035, 6095, 6307, 6797, 7117, 7327, 7597, 24573, 27559, 71193, 82110, 90510, 94981, 97410, 98671, 99301, 99510, 100110, 103362, 104622, 107778, 108438, 108822
Offset: 1
- Marius A. Burtea, Table of n, a(n) for n = 1..3648 (terms 1..1000 from Donovan Johnson; a(1211) re-indexed and duplicate a(2311) removed by _Georg Fischer_, Mar 21 2022).
- Frits Beukers, Florian Luca and Frans Oort, Power Values of Divisor Sums, The American Mathematical Monthly, Vol. 119, No. 5 (May 2012), pp. 373-380.
-
[n:n in [1..10000]| IsPower(SumOfDivisors(n),5)]; // Marius A. Burtea, Apr 17 2019
-
lista(nn) = {for (i=1, nn, s = sigma(i); if (s == 1 || ispower(s, 5), print1(i, ", ")););} \\ Michel Marcus, Jun 12 2013
A019424
Numbers whose sum of divisors is a sixth power.
Original entry on oeis.org
1, 2667, 3937, 17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117, 172011, 253921, 640737
Offset: 1
sigma(2667) = 1+3+7+21+127+381+889+2667 = 4096 = 4^6.
sigma(3937) = 1+31+127+3937 = 4096 = 4^6.
-
[n:n in [1..100000]| IsPower(SumOfDivisors(n),6)]; // Marius A. Burtea, Apr 17 2019
-
Select[Range[700000],IntegerQ[Surd[DivisorSigma[1,#],6]]&] (* Harvey P. Dale, Apr 19 2019 *)
-
c=0; for(n=1, 306455560, if(ispower(sigma(n), 6), c++; write("b019424.txt", c " " n))) /* Donovan Johnson, Jun 13 2013 */
A048258
Integers whose sum of divisors is an 8th power.
Original entry on oeis.org
1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1
Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
A063869
Least k such that sigma(k)=m^n for some m>1.
Original entry on oeis.org
2, 3, 7, 217, 21, 2667, 93, 217, 381, 651, 2752491, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683
Offset: 1
For n = 11, sigma(a(n)) = sigma(2752491) = sigma(3 * 7 * 131071) = 4^11.
-
d={2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253}; nn=3700; t=Table[Infinity, {nn}]; t[[1]]=2; u={0}; k=1; While[2+d[[k]]<=nn, mer=2^d[[k]]-1; Do[a=u[[i]]+d[[k]]; If[a<=nn, If[u[[i]]==0, t[[a]]=Min[t[[a]], mer], t[[a]]=Min[t[[a]], t[[u[[i]]]]*mer]]], {i, Length[u]}]; u=Union[u, u+d[[k]]]; k++ ]; Do[If[t[[i]]==Infinity, t[[i]]=t[[2i]]], {i, nn}]; t (* T. D. Noe, Oct 13 2006 *)
c[] = 0; c[1] = 2; r = 1; Do[S = If[# > 1, Rest@ Divisors@ #, 0] &[GCD @@ FactorInteger[DivisorSigma[1, i]][[All, -1]]]; If[Length[S] > 0, Map[If[c[#] == 0, Set[c[#], i]] &, S]; If[# > r, r = #] &@ Max@ S], {i, 2^22}]; TakeWhile[Array[c, r], # > 0 &] (* _Michael De Vlieger, May 23 2022 *)
-
a(n) = my(k=2); while (!ispower(sigma(k), n), k++); k; \\ Michel Marcus, May 23 2022
A303999
Numbers whose sum of divisors is the seventh power of one of their divisors.
Original entry on oeis.org
1, 112890, 120054, 124338, 133998, 137058, 139962, 36705396, 39118548, 52166212, 4661585292, 4677211812, 4851457716, 4968055596, 6168611160, 6232929480, 6236525932, 6261521812, 6311227560, 6362855640, 6430524120, 6468862876, 6488003880, 6500134440, 6506266732
Offset: 1
Divisors of 112890 are 1, 2, 3, 5, 6, 10, 15, 30, 53, 71, 106, 142, 159, 213, 265, 318, 355, 426, 530, 710, 795, 1065, 1590, 2130, 3763, 7526, 11289, 18815, 22578, 37630, 56445, 112890 and their sum is 279936 = 6^7.
-
with(numtheory): P:=proc(q) local a,k,n;
for n from 1 to q do a:=sort([op(divisors(n))]);
for k from 1 to nops(a) do if sigma(n)=a[k]^7 then print(n); break; fi; od; od; end: P(10^9);
-
Select[Range[150000], IntegerQ[t = DivisorSigma[1, #]^(1/7)] && Mod[#, t] == 0 &] (* Giovanni Resta, May 04 2018 *)
-
isok(n) = (n==1) || (ispower(s=sigma(n), 7) && !(n % sqrtnint(s, 7))); \\ Michel Marcus, May 05 2018
Showing 1-5 of 5 results.
Comments