cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A048251 a(n) is the smallest number whose sum of divisors is 6^n.

Original entry on oeis.org

1, 5, 22, 102, 510, 3210, 17490, 112890, 600270, 3466470, 20205570, 118879530, 697118730, 3949737330, 24217298490, 143487592710, 841422307110, 4973562896610, 29520886859310, 180254162529210, 1052751138726210, 6301225298627490, 37854941354933010, 224270177470178070
Offset: 0

Views

Author

Keywords

Comments

Terms of this sequence are products of distinct terms in A005105. - Ray Chandler, Sep 01 2010

Examples

			sigma(k) = 1296 = 6^4 for each k in {510, 642, 710, 742, 782, 795, 862, 935, 1177, 1207, 1219}; the smallest of these is a(4)=510.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k=1); while (sigma(k) != 6^n, k++); k;} \\ Michel Marcus, May 14 2018

Formula

a(n) = Min{k : A000203(k) = 6^n}.

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
a(15)-a(24) from Walter Kehowski, Aug 22 2010
Edited and extended by Ray Chandler, Sep 01 2010
Error in sequence corrected by N. J. A. Sloane, Oct 04 2010

A019424 Numbers whose sum of divisors is a sixth power.

Original entry on oeis.org

1, 2667, 3937, 17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117, 172011, 253921, 640737
Offset: 1

Views

Author

Keywords

Examples

			sigma(2667) = 1+3+7+21+127+381+889+2667 = 4096 = 4^6.
sigma(3937) = 1+31+127+3937 = 4096 = 4^6.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..100000]| IsPower(SumOfDivisors(n),6)]; // Marius A. Burtea, Apr 17 2019
  • Mathematica
    Select[Range[700000],IntegerQ[Surd[DivisorSigma[1,#],6]]&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    c=0; for(n=1, 306455560, if(ispower(sigma(n), 6), c++; write("b019424.txt", c " " n))) /* Donovan Johnson, Jun 13 2013 */
    

A048256 Numbers whose sum of divisors is 6^6 = 46656.

Original entry on oeis.org

17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117
Offset: 1

Views

Author

Keywords

Comments

Sequence has A048253(6)=30 terms from A048251(6)=17490 to A048252(6)=46117. - Ray Chandler, Sep 01 2010

Examples

			The divisors of 19410 are 1, 2, 3, 5, 6, 10, 15, 30, 647, 1294, 1941, 3235, 3882, 6470, 9705, and 19410; their sum is 46656, so 19410 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6^6], DivisorSigma[1, # ] == 6^6 &] (* Ray Chandler, Sep 01 2010 *)

A048257 Integers whose sum of divisors is a 7th power.

Original entry on oeis.org

1, 93, 127, 11811, 112890, 120054, 124338, 127330, 132770, 133998, 134090, 137058, 138754, 139962, 146710, 148665, 148810, 149534, 153986, 155510, 160215, 161194, 164985, 167134, 170986, 173098, 183687, 184682, 187143, 191913, 198485, 206823, 206965, 207687
Offset: 1

Views

Author

Keywords

Comments

If m and n are coprime members of the sequence, then m*n is also a member. - Robert Israel, May 10 2018

Examples

			Divisors(11811) = {1,3,31,93,127,381,3937,11811} and sigma(11811) = 16384 = 4^7.
		

Crossrefs

Programs

  • Maple
    filter:= n -> type(map(t -> t[2]/7, ifactors(numtheory:-sigma(n))[2]),list(integer)):
    select(filter, [$1..21*10^4]); # Robert Israel, May 09 2018
  • Mathematica
    Select[Range[210000],IntegerQ[Surd[DivisorSigma[1,#],7]]&] (* Harvey P. Dale, Jun 09 2017 *)
  • PARI
    isok(n) = ispower(sigma(n), 7); \\ Michel Marcus, Dec 20 2013

Formula

sigma(a(n)) = x^7, where the initial values of x are 1, 2, 4, 6 (48 times), ...

A048258 Integers whose sum of divisors is an 8th power.

Original entry on oeis.org

1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1

Views

Author

Keywords

Examples

			Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
		

Crossrefs

Programs

Formula

Sigma(1, a(n)) = x^8, where the initial values of x are 1, 2, 4, 6 (occurs 85 times), ...

A303995 Numbers whose sum of divisors is the fifth power of one of their divisors.

Original entry on oeis.org

1, 3210, 3498, 3882, 6453804, 7873684, 7943640, 8028120, 8099880, 9112230, 9561990, 10079430, 182626920, 192651480, 196192920, 199939320, 200271960, 201632760, 203289240, 206367480, 206645880, 207815160, 208955160, 210368760, 210406680, 210717720, 211645560
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A019423.

Examples

			Divisors of 3210 are 1, 2, 3, 5, 6, 10, 15, 30, 107, 214, 321, 535, 642, 1070, 1605, 3210 and their sum is 7776 = 6^5.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^5 then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Select[Range[10^4], IntegerQ[t = DivisorSigma[1, #]^(1/5)] && Mod[#, t] == 0 &] (* Giovanni Resta, May 04 2018 *)
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 5) && !(n % sqrtnint(s, 5))); \\ Michel Marcus, May 05 2018

Extensions

a(13)-a(27) from Giovanni Resta, May 04 2018

A048252 Largest number whose sum of divisors is 6^n.

Original entry on oeis.org

1, 5, 22, 187, 1219, 7597, 46117, 278857, 1676377, 10067797, 60450517, 362758177, 2176626817, 13060193977, 78363525817, 470183516857, 2820894903487, 16926601754197, 101559860054047, 609359671998037, 3656158318966357
Offset: 0

Views

Author

Keywords

Comments

Terms of this sequence are products of distinct terms in A005105. - Ray Chandler, Sep 01 2010

Crossrefs

Programs

  • PARI
    a(n) = {sn = 6^n; forstep(x=sn, 1, -1, if (sigma(x) == sn, return (x)););} \\ Michel Marcus, Dec 15 2013

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
a(15)-a(20) from Donovan Johnson, Nov 22 2008
Edited and extended by Ray Chandler, Sep 01 2010

A048253 a(n) is the number of integers whose sum of divisors is 6^n.

Original entry on oeis.org

1, 1, 1, 5, 11, 18, 30, 48, 85, 148, 250, 415, 669, 1066, 1697, 2635, 4036, 6111, 9137, 13540, 19930, 29098, 42184, 60655, 86598, 122821, 173314, 243469, 340329, 473221, 654779, 901741, 1236668, 1689322, 2298592, 3115200, 4206016, 5658677, 7588039
Offset: 0

Views

Author

Keywords

Examples

			For n=3, sigma(1,k) = 6^3 = 216 for each of 5 integers: 102, 110, 142, 159, and 187, so a(3) = 5.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[DivisorSigma[1, #] &, 6^8]}, Array[Count[s, 6^#] &, Log[6, Length@ s] + 1, 0]] (* Michael De Vlieger, May 14 2018 *)
  • PARI
    a(n) = sum(k=1, 6^n, sigma(k)==6^n); \\ Michel Marcus, May 14 2018

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
Edited and extended by Ray Chandler, Sep 01 2010

A063869 Least k such that sigma(k)=m^n for some m>1.

Original entry on oeis.org

2, 3, 7, 217, 21, 2667, 93, 217, 381, 651, 2752491, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683
Offset: 1

Views

Author

Labos Elemer, Aug 27 2001

Keywords

Comments

For n=2 to 20 sigma(a(n)) = m^n with m=2 or m=4. Computed terms are products of Mersenne primes (A000668). Is this true for larger n? Validity of a(11) was tested individually.
The Nagell-Ljunggren conjecture implies that sigma(x) is never 3^n for n>1. If this is true, then m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006
Sierpiński says that he proved sigma(x) is never 3^r for r>1. Hence m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006

Examples

			For n = 11, sigma(a(n)) = sigma(2752491) = sigma(3 * 7 * 131071) = 4^11.
		

Crossrefs

Programs

Formula

a(n) = Min{x : A000203(x)=m^n} for some m.

Extensions

a(24) corrected by T. D. Noe, Oct 15 2006

A048255 Integers whose sum of divisors is 6^5 = 7776.

Original entry on oeis.org

3210, 3498, 3710, 3882, 3910, 4310, 4922, 4982, 5182, 5457, 5885, 6035, 6095, 6307, 6797, 7117, 7327, 7597
Offset: 1

Views

Author

Keywords

Comments

Sequence has A048253(5)=18 terms from A048251(5)=3210 to A048252(5)=7597. - Ray Chandler

Examples

			Divisors of 7597 are {1,71,107,7597}, whose sum is 7776, so 7597 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[7600],DivisorSigma[1,#]==7776&] (* Harvey P. Dale, Jun 04 2016 *)
  • PARI
    for(i=1,t=6^5, sigma(i)==t & print1(i",")) \\ M. F. Hasler, Dec 09 2009

Formula

A048255 = { n | A000203(n)=6^5 }. - M. F. Hasler, Dec 09 2009

Extensions

Minor edits, keywords added, and values checked with given PARI code by M. F. Hasler, Dec 09 2009
Showing 1-10 of 11 results. Next