A048256
Numbers whose sum of divisors is 6^6 = 46656.
Original entry on oeis.org
17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117
Offset: 1
The divisors of 19410 are 1, 2, 3, 5, 6, 10, 15, 30, 647, 1294, 1941, 3235, 3882, 6470, 9705, and 19410; their sum is 46656, so 19410 is in the sequence.
A048257
Integers whose sum of divisors is a 7th power.
Original entry on oeis.org
1, 93, 127, 11811, 112890, 120054, 124338, 127330, 132770, 133998, 134090, 137058, 138754, 139962, 146710, 148665, 148810, 149534, 153986, 155510, 160215, 161194, 164985, 167134, 170986, 173098, 183687, 184682, 187143, 191913, 198485, 206823, 206965, 207687
Offset: 1
Divisors(11811) = {1,3,31,93,127,381,3937,11811} and sigma(11811) = 16384 = 4^7.
-
filter:= n -> type(map(t -> t[2]/7, ifactors(numtheory:-sigma(n))[2]),list(integer)):
select(filter, [$1..21*10^4]); # Robert Israel, May 09 2018
-
Select[Range[210000],IntegerQ[Surd[DivisorSigma[1,#],7]]&] (* Harvey P. Dale, Jun 09 2017 *)
-
isok(n) = ispower(sigma(n), 7); \\ Michel Marcus, Dec 20 2013
A048258
Integers whose sum of divisors is an 8th power.
Original entry on oeis.org
1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1
Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
A180265
a(n) = smallest k such that sigma(k) = 14^n, or zero if no such k exists.
Original entry on oeis.org
1, 13, 0, 1164, 15132, 230484, 2823492, 36705396, 508541124, 7194470556, 100696385244, 1503091145388, 19540184890044, 273550891167372, 3811871194625676, 53378900339114532, 727176010568075796, 10177815744800162004, 142523339476298463228, 1994910930816765350844, 27918212600229725023068
Offset: 0
a(0)=1 since sigma(1)=14^0=1. a(1)=13 since sigma(13)=14. a(2)=0 since no N exists such that sigma(N)=14^2. a(6)=2823492=2^2*3*7*33613 since sigma(2823492)=14^6 is the first 6th power. a(7)=36705396=2^2*3*7*13*33613 since sigma(36705396)=14^7 is the first 7th power.
A180460
a(n) is the smallest number m such that sigma(m)=22^n, or 0 if m does not exist.
Original entry on oeis.org
1, 0, 0, 10363, 136647, 3018141, 66411009, 1636922343, 31276995183, 688217286267, 15200749439001, 324029599659171, 7264291502741679, 160447401116572437, 3530475812620849113, 75514126111770824037, 1662716417771040164631, 36586320846189859358019, 804905851136700392012493, 17704604426749226872106319
Offset: 0
a(4)=136647=3^4*7*241 since sigma(3^4*7*241)=(11^2)(2^3)(2*11^2)=2^4*11^4 and 136647 is the smallest such number.
A180461
a(n) is the smallest number m such that sigma(m)=26^n, or 0 if m does not exist.
Original entry on oeis.org
1, 0, 0, 0, 312399, 8911029, 187131609, 5560483959, 126501010209, 3186244194273, 85514682943809, 2206011586559697, 55462952723504823, 1577373555132452973, 37744962467192492463, 974816528291192900817, 25345238283868264629273, 658976194648474007782617, 17245346702665551116114601
Offset: 0
a(4)=312399=3^2*103*337 since sigma(3^2*103*337)=(13)*(2^3*13)*(2*13^2)=2^4*13^4 and 312399 is the smallest such number.
A180462
a(n) is the smallest number m such that sigma(m)=34^n, or 0 if m does not exist.
Original entry on oeis.org
1, 0, 0, 38659, 1333447, 45356239, 1542131167, 52432478719, 0, 44114690056791, 1545604624685757, 52550557239372861, 1542390446782691499, 52463299805385993363, 1783774217997898256739, 60648345436543315211523, 2091915317967934350057159, 69957029735592536691912261
Offset: 0
a(3)=38659=67*577 since sigma(67*577)=(2^2*17)*(2*17^2)=2^3*17^3 and 38659 is the smallest such number.
A180463
a(n) is the smallest number m such that sigma(m)=38^n, or 0 if m does not exist.
Original entry on oeis.org
1, 37, 0, 0, 0, 0, 0, 85811686941, 3175032416817, 159809964979789, 4561513295803851, 155532888827892597, 5754716886632026089, 249887680992407652771, 8319571903089894983277, 307824160414326114381249, 12077787753685017948512649, 455818072892233197941369463
Offset: 0
a(7)=85811686941=3*28603895647 since sigma(85811686941)= (2^2)*(2^5*19^7)=2^7*19^7 and 85811686941 is the smallest such number.
A180464
a(n) is the smallest number m such that sigma(m)=46^n, or 0 if m does not exist.
Original entry on oeis.org
1, 0, 0, 0, 0, 180217597, 6217507317, 325975026477, 15034820907837, 919684211139697, 31808042757482763, 1463508270300620883, 58746435953696315769, 2709539295335742607689, 138000408890542031957601, 5718143312090439006662949, 263735727094699893912217269
Offset: 0
a(5)=180217597=7*25745371 and sigma(180217597)=(2^3)*(2^2*23^5)=2^5*23^5 and 180217597 is the smallest such number.
A048252
Largest number whose sum of divisors is 6^n.
Original entry on oeis.org
1, 5, 22, 187, 1219, 7597, 46117, 278857, 1676377, 10067797, 60450517, 362758177, 2176626817, 13060193977, 78363525817, 470183516857, 2820894903487, 16926601754197, 101559860054047, 609359671998037, 3656158318966357
Offset: 0
-
a(n) = {sn = 6^n; forstep(x=sn, 1, -1, if (sigma(x) == sn, return (x)););} \\ Michel Marcus, Dec 15 2013
Showing 1-10 of 13 results.
Comments