cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A048256 Numbers whose sum of divisors is 6^6 = 46656.

Original entry on oeis.org

17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117
Offset: 1

Views

Author

Keywords

Comments

Sequence has A048253(6)=30 terms from A048251(6)=17490 to A048252(6)=46117. - Ray Chandler, Sep 01 2010

Examples

			The divisors of 19410 are 1, 2, 3, 5, 6, 10, 15, 30, 647, 1294, 1941, 3235, 3882, 6470, 9705, and 19410; their sum is 46656, so 19410 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6^6], DivisorSigma[1, # ] == 6^6 &] (* Ray Chandler, Sep 01 2010 *)

A048257 Integers whose sum of divisors is a 7th power.

Original entry on oeis.org

1, 93, 127, 11811, 112890, 120054, 124338, 127330, 132770, 133998, 134090, 137058, 138754, 139962, 146710, 148665, 148810, 149534, 153986, 155510, 160215, 161194, 164985, 167134, 170986, 173098, 183687, 184682, 187143, 191913, 198485, 206823, 206965, 207687
Offset: 1

Views

Author

Keywords

Comments

If m and n are coprime members of the sequence, then m*n is also a member. - Robert Israel, May 10 2018

Examples

			Divisors(11811) = {1,3,31,93,127,381,3937,11811} and sigma(11811) = 16384 = 4^7.
		

Crossrefs

Programs

  • Maple
    filter:= n -> type(map(t -> t[2]/7, ifactors(numtheory:-sigma(n))[2]),list(integer)):
    select(filter, [$1..21*10^4]); # Robert Israel, May 09 2018
  • Mathematica
    Select[Range[210000],IntegerQ[Surd[DivisorSigma[1,#],7]]&] (* Harvey P. Dale, Jun 09 2017 *)
  • PARI
    isok(n) = ispower(sigma(n), 7); \\ Michel Marcus, Dec 20 2013

Formula

sigma(a(n)) = x^7, where the initial values of x are 1, 2, 4, 6 (48 times), ...

A048258 Integers whose sum of divisors is an 8th power.

Original entry on oeis.org

1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1

Views

Author

Keywords

Examples

			Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
		

Crossrefs

Programs

Formula

Sigma(1, a(n)) = x^8, where the initial values of x are 1, 2, 4, 6 (occurs 85 times), ...

A180265 a(n) = smallest k such that sigma(k) = 14^n, or zero if no such k exists.

Original entry on oeis.org

1, 13, 0, 1164, 15132, 230484, 2823492, 36705396, 508541124, 7194470556, 100696385244, 1503091145388, 19540184890044, 273550891167372, 3811871194625676, 53378900339114532, 727176010568075796, 10177815744800162004, 142523339476298463228, 1994910930816765350844, 27918212600229725023068
Offset: 0

Views

Author

Walter Kehowski, Aug 22 2010

Keywords

Examples

			a(0)=1 since sigma(1)=14^0=1. a(1)=13 since sigma(13)=14. a(2)=0 since no N exists such that sigma(N)=14^2. a(6)=2823492=2^2*3*7*33613 since sigma(2823492)=14^6 is the first 6th power. a(7)=36705396=2^2*3*7*13*33613 since sigma(36705396)=14^7 is the first 7th power.
		

Crossrefs

Extensions

Edited (including b-file) by N. J. A. Sloane, Oct 05 2010
Terms a(25) onward from Max Alekseyev, Mar 04 2014

A180460 a(n) is the smallest number m such that sigma(m)=22^n, or 0 if m does not exist.

Original entry on oeis.org

1, 0, 0, 10363, 136647, 3018141, 66411009, 1636922343, 31276995183, 688217286267, 15200749439001, 324029599659171, 7264291502741679, 160447401116572437, 3530475812620849113, 75514126111770824037, 1662716417771040164631, 36586320846189859358019, 804905851136700392012493, 17704604426749226872106319
Offset: 0

Views

Author

Walter Kehowski, Sep 06 2010

Keywords

Comments

Conjecture: Given any even integer E not a power of 2 (see A078426) there exists a positive integer N such that for all n>=N the equation sigma(m)=E^n has at least one solution for m.

Examples

			a(4)=136647=3^4*7*241 since sigma(3^4*7*241)=(11^2)(2^3)(2*11^2)=2^4*11^4 and 136647 is the smallest such number.
		

Crossrefs

Extensions

Terms a(37) onward (in b-file) from Max Alekseyev, Mar 04 2014

A180461 a(n) is the smallest number m such that sigma(m)=26^n, or 0 if m does not exist.

Original entry on oeis.org

1, 0, 0, 0, 312399, 8911029, 187131609, 5560483959, 126501010209, 3186244194273, 85514682943809, 2206011586559697, 55462952723504823, 1577373555132452973, 37744962467192492463, 974816528291192900817, 25345238283868264629273, 658976194648474007782617, 17245346702665551116114601
Offset: 0

Views

Author

Walter Kehowski, Sep 06 2010

Keywords

Examples

			a(4)=312399=3^2*103*337 since sigma(3^2*103*337)=(13)*(2^3*13)*(2*13^2)=2^4*13^4 and 312399 is the smallest such number.
		

Crossrefs

Extensions

Terms a(17) onward from Max Alekseyev, Mar 04 2014

A180462 a(n) is the smallest number m such that sigma(m)=34^n, or 0 if m does not exist.

Original entry on oeis.org

1, 0, 0, 38659, 1333447, 45356239, 1542131167, 52432478719, 0, 44114690056791, 1545604624685757, 52550557239372861, 1542390446782691499, 52463299805385993363, 1783774217997898256739, 60648345436543315211523, 2091915317967934350057159, 69957029735592536691912261
Offset: 0

Views

Author

Walter Kehowski, Sep 06 2010

Keywords

Examples

			a(3)=38659=67*577 since sigma(67*577)=(2^2*17)*(2*17^2)=2^3*17^3 and 38659 is the smallest such number.
		

Crossrefs

Extensions

Terms a(16) onward from Max Alekseyev, Mar 04 2014

A180463 a(n) is the smallest number m such that sigma(m)=38^n, or 0 if m does not exist.

Original entry on oeis.org

1, 37, 0, 0, 0, 0, 0, 85811686941, 3175032416817, 159809964979789, 4561513295803851, 155532888827892597, 5754716886632026089, 249887680992407652771, 8319571903089894983277, 307824160414326114381249, 12077787753685017948512649, 455818072892233197941369463
Offset: 0

Views

Author

Walter Kehowski, Sep 06 2010

Keywords

Examples

			a(7)=85811686941=3*28603895647 since sigma(85811686941)= (2^2)*(2^5*19^7)=2^7*19^7 and 85811686941 is the smallest such number.
		

Crossrefs

Extensions

Terms a(16) onward from Max Alekseyev, Mar 03 2014

A180464 a(n) is the smallest number m such that sigma(m)=46^n, or 0 if m does not exist.

Original entry on oeis.org

1, 0, 0, 0, 0, 180217597, 6217507317, 325975026477, 15034820907837, 919684211139697, 31808042757482763, 1463508270300620883, 58746435953696315769, 2709539295335742607689, 138000408890542031957601, 5718143312090439006662949, 263735727094699893912217269
Offset: 0

Views

Author

Walter Kehowski, Sep 06 2010

Keywords

Examples

			a(5)=180217597=7*25745371 and sigma(180217597)=(2^3)*(2^2*23^5)=2^5*23^5 and 180217597 is the smallest such number.
		

Crossrefs

Extensions

Terms a(15) onward from Max Alekseyev, Mar 03 2014

A048252 Largest number whose sum of divisors is 6^n.

Original entry on oeis.org

1, 5, 22, 187, 1219, 7597, 46117, 278857, 1676377, 10067797, 60450517, 362758177, 2176626817, 13060193977, 78363525817, 470183516857, 2820894903487, 16926601754197, 101559860054047, 609359671998037, 3656158318966357
Offset: 0

Views

Author

Keywords

Comments

Terms of this sequence are products of distinct terms in A005105. - Ray Chandler, Sep 01 2010

Crossrefs

Programs

  • PARI
    a(n) = {sn = 6^n; forstep(x=sn, 1, -1, if (sigma(x) == sn, return (x)););} \\ Michel Marcus, Dec 15 2013

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
a(15)-a(20) from Donovan Johnson, Nov 22 2008
Edited and extended by Ray Chandler, Sep 01 2010
Showing 1-10 of 13 results. Next